
Welcome to the Entropics: Boot-Time Entropy in Embedded Devices

Keaton Mowery, Michael Wei, David Kohlbrenner, Hovav Shacham, and Steven Swanson

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, California, USA

Abstract—We present three techniques for extracting en-
tropy during boot on embedded devices.

Our first technique times the execution of code blocks early
in the Linux kernel boot process. It is simple to implement and
has a negligible runtime overhead, but, on many of the devices
we test, gathers hundreds of bits of entropy.

Our second and third techniques, which run in the boot-
loader, use hardware features — DRAM decay behavior and
PLL locking latency, respectively — and are therefore less
portable and less generally applicable, but their behavior is
easier to explain based on physically unpredictable processes.

We implement and measure the effectiveness of our tech-
niques on ARM-, MIPS-, and AVR32-based systems-on-a-chip
from a variety of vendors.

I. INTRODUCTION

Random numbers unpredictable by an adversary are cru-

cial to many computing tasks. But computers are designed to

be deterministic, which makes it difficult to generate random

numbers. Substantial effort has gone into developing and

deploying subsystems that gather and condition entropy, and

that use it to generate random numbers on demand.

In this paper, we take an extreme position: Randomness

is a fundamental system service; a system cannot be said to

have successfully booted unless it is ready to provide high-

entropy randomness to applications.

Our main contributions are three techniques for gathering

entropy early in the boot process — before interrupts are

enabled, before a second kernel thread is spawned. Our

techniques are suitable for use even on embedded sys-

tems, where entropy-gathering is more challenging than on

desktop PCs. We implement our proposed techniques and

assess their effectiveness on systems-on-a-chip (SoCs) that

integrate ARM, MIPS, and even AVR32 CPU cores.

Motivation: Our work is inspired by the recent paper of

Heninger, Durumeric, Wustrow, and Halderman [16], which

uncovered serious flaws in the design and implementation of

the Linux kernel’s randomness subsystem. This subsystem

exposes a blocking interface (/dev/random) and a non-

blocking interface (/dev/urandom); in practice, nearly

all software uses the nonblocking interface. Heninger et al.

observe (1) that entropy gathered by the system is not made

available to the nonblocking interface until Linux estimates

that 192 bits of entropy have been gathered, and (2) that

Linux is unnecessarily conservative in estimating the entropy

in events, and in particular that on embedded systems no

observed events are credited with entropy. These two facts

combine to create a “boot-time entropy hole,” during which

the output of /dev/urandom is predictable.

The Linux maintainers overhauled the randomness sub-

system in response to Heninger et al.’s paper. The timing

of every IRQ is now an entropy source, not just IRQs for

hard disks, keyboards, and mice. Entropy is first applied to

the nonblocking pool, in the hope of supplying randomness

to clients soon after boot. (Clients waiting on the blocking

interface can block a bit longer.)

The new design leaves in place the race condition between

entropy accumulation and the reading of supposedly random

bytes from the nonblocking pool. It would be better, we

argue, to gather entropy so early in the boot process that all

requests for randomness can be satisfied.

In this paper, we present entropy-gathering techniques

that realize this vision. We show how to gather entropy

in the bootloader or early in the kernel boot process on

embedded systems running a variety of popular processors.

Our techniques require neither the multicore x86 processor

of desktop PCs nor the sophisticated sensors available to

smartphones. They do not require network connectivity.

They can be used in place of, or side by side with, Linux’s

current entropy-gathering infrastructure.

Our three techniques provide different tradeoffs along

three metrics: (1) How many random bits can be obtained,

and how quickly? (2) How much system-specific knowledge

is required to implement the technique? (3) To what extent

can the entropy obtained be explained by well-studied phys-

ical processes that are believed to be unpredictable? None

of our proposed techniques is ideal along all three metrics.

Our first technique: Instruction timing early in kernel

boot: In our first technique, we instrument the kernel’s

startup code to record how long each block of code takes

to execute. This approach has previously been used to

gather entropy in userland code; we show that it is also

applicable when a single kernel thread of execution runs,

with interrupts disabled, on an embedded system. On many

of the devices we tested (see Section II), this technique

gathers a surprisingly large amount of entropy — over 200

bits on the Raspberry Pi, for example — at negligible runtime

overhead; on other devices, less entropy is available.

We have not been able to account conclusively for the

large amount of entropy this technique gathers on some

2013 IEEE Symposium on Security and Privacy

© 2012, Keaton Mowery. Under license to IEEE.

DOI 10.1109/SP.2013.46

589

devices or for the smaller amount it gathers on other

devices. In Section III, we pinpoint architectural features

that are partly responsible.

Our second and third techniques: DRAM decay and

PLL locking: In our second class of techniques, we take

advantage of architectural features that vary between SoCs,

rendering them less portable and less widely applicable, but

promising more entropy. In addition, we are able to pinpoint

more precisely the sources of the entropy we measure.

In Section IV, we show that it is possible for bootloader

code, running from on-chip SRAM, to turn off DRAM

refresh. With refresh disabled, the contents of DRAM decay

unpredictably; we exploit this fact to obtain an entropy

source. In Section V, we show that our ability to repeatedly

reconfigure a peripheral clock on the BeagleBoard xM

translates into another high-rate entropy source.

A. Related Work

As noted above, the motivation for our paper is Heninger

et al.’s recent study of the Linux randomness subsystem [16].

Random number generation is hard, and flaws in ran-

domness subsystems have been identified with dismaying

regularity. In 1996, Goldberg and Wagner analyzed the

random number generator in the Netscape browser [10]. A

decade later, Luciano Bello found that the OpenSSL package

shipped with Debian and Ubuntu had a broken random

number generator [37]. The bug’s effects were quantified by

Yilek et al. [41]. Cryptographers have designed “hedged”

cryptosystems whose security degrades as little as possible

in the absence of good randomness [2]. Otherwise secure

random number generators can break in novel settings: Ris-

tenpart and Yilek observed that virtual machine resets could

lead to randomness reuse and proposed solutions [31, 40].

Researchers have expended considerable effort consider-

ing how best to design randomness subsystems. Gutmann

described design principles for random number genera-

tors [11]; Kelsey, Schneier, Wagner, and Hall proposed

a formal security model for random number generators

and described attacks on deployed systems [23]. Kelsey,

Schneier, and Ferguson then proposed Yarrow, a concrete

design for a family of random number generators [24]. More

recently, NIST has made recommendations for producing

random numbers from an entropy pool [1]. Researchers have

also studied the effectiveness of the randomness subsystems

deployed with Linux [12, 26] and Windows [7]. Gutterman,

Pinkas, and Reinman, in their study of Linux randomness

system [12] specifically pointed out the vulnerability of

Linux-based routers like those running OpenWRT software.

Entropy can be obtained from many sources: from ded-

icated hardware, using analog feedback circuits such as

phase-locked loops (PLLs) [9] or digital feedback circuits

(as included in Intel’s latest processors [4, 14]); from timing

other hardware devices, such as hard disks [6, 20]; from

timing user input; or, in sensor-rich devices such as smart-

phones, from sensor noise in microphones [8, Section 5.3.1],

cameras [3], and accelerometers [38].

Instruction timings have long been used as a source

of entropy. In Section II-A we describe Bernstein’s

dnscache-conf program from 2000. The method was

explored in detail in the HAVENGE system of Seznec and

Sendrier [33]. In both cases, the entropy is assumed to

derive from the unpredictable arrival times of interrupts and

the behavior of the system scheduler. By contrast, our first

technique (described in Section II) obtains entropy even

with interrupts disabled and a single thread of execution.

Pyo, Pae, and Lee, in a short note, observe that DRAM

refresh timings are unpredictable, which means that DRAM

access timings can be used as an entropy source [30].

Theoretical grounding for the unpredictability of instruc-

tion timing was given by McGuire, Okech and Zhou [27] and

Mytkowicz, Diwan, and Bradley [28]. These papers consider

x86 chips; the processors we study are considerably simpler.

Decay patterns in RAM, used in our second technique

(described in Section IV), have also been considered before.

Holcomb, Burleson, and Fu use SRAM decay as an entropy

source on RFID devices [18]. Halderman et al. studied

DRAM decay patterns in detail [13].

II. EARLY KERNEL ENTROPY

Our first method for gathering entropy is an application

of a simple idea: After each unit of work in a code module,

record the current time using a high-resolution clock. Specif-

ically, we instrument start_kernel, the first C function

run in the Linux kernel on boot, and use the cycle counter

as our clock.

Our approach is attractive. It runs as early as possible in

the kernel boot process: All but one use of randomness in the

Linux kernel occurs after start_kernel has completed.

It imposes almost no performance penalty, requiring, in our

prototype implementation, 3 KiB of kernel memory and exe-

cuting a few hundred assembly instructions. It is simple, self-

contained, and easily ported to new architectures and SoCs.

The question is, Does it work? Previous applications of

the same idea ran in user mode on general-purpose x86

machines. They could take advantage of the complexity

of the x86, the unpredictable arrival timing of interrupts,

interleaved execution of other tasks, and the overhead of

system call servicing when accessing a high-resolution

clock. By contrast, our code runs on an embedded device

with interrupts disabled and a single thread of execution.

Nevertheless, we are able to extract a surprising amount of

entropy — in some cases, hundreds of bits.

In this section, we discuss our implementation and

evaluate its effectiveness on ARM SoCs from six vendors, a

MIPS SoC, and an AVR32 SoC. In Section III, we discuss

architectural mechanisms that are partly responsible for the

entropy we observe.

590

A. Genesis

In 2000, Daniel J. Bernstein released dnscache 1.00,

a caching DNS recursive resolver that is now part of the

djbdns package. DNS resolvers generally operate over

UDP, which means that an interested attacker can spoof the

answer to a query by simply forging a packet. To combat

this, each DNS query carries along with it a pre–selected

port number and query ID, which the response must have to

be considered valid. Therefore, dnscache, when acting as

a client of other DNS servers, must be able to choose these

port numbers and query IDs well [19, 22].

One of dnscache-conf’s duties is to provide en-

tropy that will later be used by dnscache. To gather

this entropy, the dnscache-conf utility simply instru-

ments its own startup procedure with multiple calls to

gettimeofday(), and mixes each result into the entropy

pool. Due to the cost of each syscall, unpredictable hardware

interrupts, OS process scheduling, clock skew, and a host of

other factors, this method provides dnscache-conf with

high-quality entropy for the cost of a few extra syscalls. An

excerpt from dnscache-conf.c:

makedir("log");

seed_addtime();

perm(02755);

seed_addtime();

makedir("log/main");

seed_addtime();

owner(pw->pw_uid,pw->pw_gid);

seed_addtime();

perm(02755);

seed_addtime();

A method which works in userland on an x86 machine

might not apply to kernel-level code on much simpler

embedded devices. Indeed, we were initially skeptical: In

the absence of interrupts, multiple threads, syscall overhead,

and on simpler processors than the x86, would there still be

enough variation to make such a scheme viable?

B. Methodology

1) Kernel Instrumentation: To collect information about

the kernel boot process, we modified a Linux kernel for each

system we examined. Our kernel instrumentation consists of

a basic macro that can be inserted anywhere in kernel boot to

record the current cycle count with low overhead. The macro

recorded the current cycle count to an incrementing index

in a statically allocated array. We incremented the index at

compile time, and thus the only operations performed by the

measurement at run time are reading the cycle counter and

a single memory store.

We inserted the macro between every function call in

start_kernel, the first C function called during kernel

boot. The majority of the code executed during this sequence

is straight-line, with a varying number of instructions ex-

ecuted during each function call. We chose this sampling

method because it offered the simplest patch to the kernel

at the earliest point in the boot process. Our instrumentation

then printed the measured times to the kernel log. An init

script copied out the relevant data from the log, truncated the

log, and immediately restarted the system using reboot.

Temperature data was not collected. In this manner, we

gathered data on thousands of restarts per day per machine

with minimal interaction. Machines were switched off and

the data pulled after 24–48 hours of continuous rebooting

and data collection.

To estimate the performance overhead, we implemented

a “production-ready” version, which skips printing to the

kernel log in lieu of mixing the results directly into the

kernel’s randomness pools. We then used the cycle counter to

measure the execution time of start_kernel, both with

and without our instrumentation. On the Raspberry Pi (de-

tailed in Section II-C3), our technique adds approximately

0.00019 seconds to the kernel boot process.

2) Devices: As described in the previous section, we

instrumented a variety of Linux kernels and ran them on

a broad variety of embedded platforms, ranging from high-

powered ARM computers to low-end special-purpose MIPS

and AVR devices.

ARM: ARM, Inc. licenses its processor architecture to

many companies that integrate ARM cores into their designs.

Two systems-on-a-chip that integrate the same ARM core

might nevertheless have very different performance charac-

teristics. To check the general applicability of our approach

to ARM-based embedded systems, we instrumented and col-

lected data from systems-on-a-chip from many of the most

prominent ARM licensees: Broadcom, Marvell, NVIDIA,

Texas Instruments, Qualcomm, and Samsung. These vendors

represent six of the top seven suppliers of smartphone

processors by revenue.

Specifically, the first system we tested was the Raspberry

Pi, which contains a Broadcom BCM2835 SoC featuring a

1176JZF-S core, which is an ARM11 core implementing the

ARMv6 architecture. We also instrumented the BeagleBoard

xM, which uses a Texas Instruments DM3730 containing a

ARMv7 Cortex-A8; the Trim-Slice featuring an NVIDIA

Tegra 2, a ARMv7 Cortex-A9; the Intrinsyc DragonBoard,

with a Qualcomm SnapDragon SoC containing a Qual-

comm Krait ARMv7; the FriendlyARM Mini6410 with a

Samsung S3C6410, another version of the ARM1176JZF-S

ARM11 ARMv6 core; and the Cubox, which uses a Marvell

ARMADA 510 SoC containing a Sheeva ARMv7 core.

MIPS: Previous work on embedded device entropy

identified routers as important targets, as they are con-

veniently located to inspect and modify network traffic

and, as reported by Heninger et al. [16], routinely ship

with extremely poor entropy, as evidenced by their SSL

certificates.

591

With this in mind, we instrumented the early Linux boot

process on the Linksys WRT54GL router, containing a

Broadcom 5352EKPBG 200MHz MIPS “router-on-a-chip.”

Revered for their extensibility, the WRT54GL represents a

basic wireless router as found in the homes of millions.

AVR32: Finally, we instrumented a kernel for the Atmel

NGW100 mkII, which contains a AT32AP7000-U AVR32

core. The AVR32, designed by Atmel, represents one of the

smallest and lowest-power CPUs capable of running Linux.

Even on the AVR32, our techniques uncover substantial

randomness. The existence of instruction entropy on this

platform indicates that execution randomness is not solely

due to processor optimizations and complexity.

C. Results and Analysis

In this section, we will discuss the results of each device’s

kernel instrumentation, and the expected quality of the

entropy extracted.

As the existence of true randomness is an open philosoph-

ical question (and therefore beyond the scope of this paper),

we will treat entropy as “unpredictability”: given the knowl-

edge that a remote attacker can possibly have, how difficult

would it be to guess the device–generated random bits?

1) Statistical Tests: We are unable to conclusively pin-

point and characterize every source of entropy in these

systems. Therefore, this analysis will deal only with empir-

ical measurements, as sampled from each board over many

boots. We will rely mainly on two estimations: distribution

entropy and min-entropy.

Distribution entropy represents, for a given empirical

sample, the Shannon entropy of the underlying distribution.

For example, a set of samples consisting of 50 A’s and 50

B’s would have a single bit of distribution entropy, while

a set of samples consisting of 1024 unique values has a

distribution entropy of 10 bits. Distribution entropy can be

calculated, for a set S of n distinct observed values Vi, each

being seen Ci times, with C = |S|= ∑
n
i=0(Ci), as:

D(S) =−
n

∑
i=1

Ci

C
· lg

(Ci

C

)

(1)

Note that distribution entropy will almost always underes-

timate the entropy of the underlying distribution. That is, the

distribution entropy calculated from a empirical sampling S

will always be less than or equal to lg(|S|), regardless of

the actual entropy of the underlying distribution.

Our other empirical estimator, min-entropy, measures the

prevalence of the most common element in a distribution. In

other words, if an adversary is allowed a single guess at the

value, min-entropy measures how often she will be correct.

For a set S of n distinct observed values Vi with counts Ci,

the min-entropy is:

M(S) =− lg
(maxi(Ci)

C

)

(2)

With these two metrics, we can characterize the distribu-

tions sampled from each device and predict their real-world

entropy content.

2) Entropy Extraction: Furthermore, each boot sequence

generates a vector of test times, one per test. In our analysis,

we will examine both the sampled distributions of individual

test times, as well as the sampled distribution of test vectors.

The test vector, once generated, can be fed into an entropy

extractor to produce an evenly–distributed random seed,

which can then used to seed kernel pseudo-random number

generators.

The values in the test vector are partly correlated: if noth-

ing else, later tests have cycle counts larger than earlier tests.

Extracting the entropy from such a source is a challenging

theoretical problem [29], but under the random oracle heuris-

tic simply applying a cryptographic hash to the test vector

is sufficient. NIST has published explicit recommendations

for implementing what they call “reseeding” in randomness

generators [1].

3) Raspberry Pi: The Raspberry Pi is a popular

single-board ARM computer, built around the Broadcom

BCM2835 System–on–a–chip (SoC), which contains an

ARM 1176JZF-S ARM11 ARMv6 core clocked at 700

MHz. We modified the Linux 3.2.27 kernel provided for the

Raspberry Pi1 to perform our data collection. This involved

enabling and configuring the hardware cycle counter and

the two hardware performance counters present in the ARM

1176JZF-S, as well as surrounding each function call in

start_kernel with instrumentation to record the current

counter values, and a final function to dump our results to

the kernel log. We were able to surround every function in

start_kernel, for a total of 78 individual tests.

Next, we booted the instrumented kernel on four identical

Raspberry Pis, and recorded the counters for each boot.

In short, almost every test shows a surprising amount of

variation in the number of cycles it takes to execute. Figures

1, 2, 3, and 4 show a histogram of test times, in cycles,

for tests 4, 5, 36, and 41 as seen across 301,647 boots

across all four Raspberry Pi devices. The lighter regions are

the contribution of device #0, which, by itself, contributes

130,961 boots. These four graphs are representative of the

four classes of histogram that we see on the Raspberry

Pi: a “two-normal” distribution like Test 4, a “quantized”

distribution like Test 5, a “bimodal plus noise” distribution

like Test 36, and a “normal” distribution like Test 41.

For comparison, Test 4 corresponds to the initialization

function cgroup_init_early(), which is responsible

for setting up process groups for resource management,

and mostly involves setting memory locations to initial

values. Test 5 is local_irq_disable(), which disables

interrupts. It consists solely of the ARM instruction "cpsid

i", and the variation in this test is likely due to hardware

1Online: https://github.com/raspberrypi/linux

592

https://github.com/raspberrypi/linux

0

10,000

20,000

30,000

40,000

50,000

20000 21000 22000

Cycles

#
 S

a
m

p
le

s

Figure 1: Histogram of cycle counts for Test 4 on 4 Rasp-

berry Pis. Lighter region is data from device #0 only.

0

50,000

100,000

150 200 250

Cycles

#
 S

a
m

p
le

s

Figure 2: Histogram of cycle counts for Test 5 on 4 Rasp-

berry Pis. Lighter region is data from device #0 only.

0

10,000

20,000

30,000

40,000

600 700 800 900 1000 1100

Cycles

#
 S

a
m

p
le

s

Figure 3: Histogram of cycle counts for Test 36 on 4

Raspberry Pis. Lighter region is data from device #0 only.

0

10,000

20,000

30,000

70000 72500 75000

Cycles

#
 S

a
m

p
le

s

Figure 4: Histogram of cycle counts for Test 41 on 4

Raspberry Pis. Lighter region is data from device #0 only.

initialization state. Test 36 is prio_tree_init(), and is

simply a small loop which initializes an array. The relatively

quantized period of this function is likely due to stalls in

memory fetches and stores. Also, note that IRQs remain

disabled until Test 45, and so interrupts cannot be blamed

for any variation in these test times.

Overall, these distributions are far wider than we initially

expected. Test 41, in particular, has a minimum value of

69,098 cycles and a maximum of 76,625, almost 10.9%

more. In this region of 7,527 cycles, the data set contains

5,667 distinct test values.

Taken individually, the results of each test give an em-

pirical distribution over the cycles elapsed during execution.

If we treat a test as a random variable, we can extract that

entropy and use it to seed a random number generator.

To estimate the entropy contribution of each test, we apply

the distribution entropy calculation to our observed data. The

results of this calculation are in Table I.

However, further investigation is needed before we pro-

claim success. While each test has between 0.45 and 12.99

bits of distribution entropy, we cannot naively sum these

numbers and proclaim that to be our total entropy produced.

In order for that approach to be valid, each test must be

statistically independent — the time taken for test T must not

depend on the results for tests (0, . . . ,T −1). If, in the worst

case, T was a known function of (0, . . . ,T −1), then it would

not contribute any entropy whatsoever to the overall total,

even if it had plenty of distribution entropy: Its distribution

entropy would already be counted by the preceding tests.

(Note that we can always safely mix the results of T into

the entropy pool. In the worst case, doing so adds no benefit.)

We applied a straightforward correlation test to the data

we gathered from the Raspberry Pi and our other sys-

tems. More sophisticated tests are possible, for example

using NIST’s test suite [32]. Specifically, we computed

the correlation coefficients between each pair of tests. We

can then select a threshold of acceptable risk, and exclude

from our entropy estimate any tests which are correlated

with another test beyond that limit. Figure 5 shows the

full entropy estimate function for the Raspberry Pi for

all possible thresholds. This function is surprisingly linear,

suggesting that the Raspberry Pi tests, while correlated, do

not cluster together when taken as a whole. With no self-

evident threshold to pick, we arbitrarily exclude from our

entropy estimate any tests having correlation of 0.4 or more

with another test.

Applying this test to our Raspberry Pi data, we find

some intriguing results. Figure 6 shows a scatterplot of

Test 4 and Test 7. The former is the kernel function

cgroup_init_early, which is responsible for initializ-

ing resource–managing process groups, and mainly consists

of initializing variables throughout kernel memory. The

latter, on the other hand, is boot_cpu_init, which is in

charge of marking the CPU as “online” and “active”, allow-

593

Test RPi BB
Trim-

Slice

Dragon

Board
Mini-

6410
Cubox WRT NGW

#0 4.07 4.10 5.70 9.48 - 0.12 8.14 4.33
#1 1.91 7.31 4.31 4.30 0.55 5.02 6.82 0.-
#2 0.85 2.32 4.77 2.33 0.- 0.- 7.25 1.80
#3 8.51 2.58 9.97 10.34 0.29 0.42 4.66 0.-
#4 9.32 8.76 10.88 9.51 5.41 0.- 4.66 0.-
#5 2.58 2.78 2.95 2.74 0.17 0.- 4.15 0.77
#6 6.58 2.33 8.86 5.04 0.51 1.21 8.04 2.36
#7 5.25 5.45 7.66 5.44 3.28 2.12 8.80 1.05
#8 2.24 3.85 9.45 8.77 0.34 2.45 2.21 1.80
#9 8.79 5.09 10.98 8.97 6.03 4.55 3.57 2.19

#10 13.42 9.32 11.28 14.21 7.74 7.92 6.60 2.19
#11 2.73 11.42 8.54 4.01 1.78 0.- 7.87 2.19
#12 2.73 6.25 7.97 2.47 6.34 0.- 7.99 2.19
#13 8.48 5.27 9.77 8.63 0.03 1.68 8.70 1.00
#14 2.28 9.82 8.67 6.06 7.47 0.- 0.78 1.58
#15 12.19 7.54 10.79 10.85 0.79 2.41 0.41 1.00
#16 2.00 11.12 7.95 4.96 6.93 0.- 1.59 0.-
#17 9.83 6.40 9.95 10.20 0.70 1.52 6.22 0.-
#18 3.88 10.04 8.38 8.44 6.95 0.- 9.92 1.00
#19 8.48 8.27 9.40 7.67 7.30 0.01 9.09 0.-
#20 11.43 9.21 10.43 6.65 7.32 2.53 8.66 1.00
#21 3.24 6.15 3.80 11.12 6.74 0.- 7.28 1.00
#22 6.30 10.59 8.59 6.37 1.27 1.05 8.66 0.-
#23 10.85 6.63 10.18 9.72 7.60 1.50 9.34 1.00
#24 13.52 5.89 10.51 9.68 6.82 1.14 - 1.00
#25 9.85 10.55 10.28 10.83 4.94 1.84 - 0.-
#26 2.29 10.17 6.26 4.05 7.73 0.- - 1.00
#27 14.15 8.47 11.29 14.43 7.73 2.90 - 1.00
#28 8.14 4.85 10.41 10.24 4.07 1.77 - 1.00
#29 3.80 11.77 8.68 4.97 7.36 0.- - 0.-
#30 9.60 10.20 10.01 2.21 7.22 1.99 - 0.-
#31 10.29 3.74 10.03 10.15 7.56 2.07 - 0.-
#32 5.14 3.20 10.05 9.73 7.57 0.- - 0.-
#33 9.28 9.89 9.54 10.27 4.79 2.18 - 5.90
#34 11.83 9.52 11.02 8.24 6.33 2.78 - 0.02
#35 11.07 10.49 10.76 12.70 4.94 3.57 - 0.-
#36 7.67 9.81 7.94 11.00 4.67 1.12 - 0.-
#37 9.21 10.41 10.29 4.96 7.07 2.12 - 0.-
#38 7.53 11.31 9.25 8.45 7.53 1.26 - 0.-
#39 7.38 9.24 8.68 4.43 0.64 0.10 - 0.14
#40 8.15 8.07 11.17 6.28 7.53 2.96 - 0.12
#41 11.67 7.36 10.81 8.78 4.50 5.49 - 5.07
#42 7.02 8.88 8.41 13.75 1.35 1.04 - 4.27
#43 2.21 11.55 9.24 3.55 9.74 0.- - 1.25
#44 3.88 7.99 6.43 6.65 4.20 0.93 - 1.90
#45 4.27 9.08 6.70 1.06 0.82 0.- - 0.-
#46 10.97 4.33 9.05 1.62 2.82 5.57 - 6.00
#47 11.36 3.22 10.67 9.65 0.65 3.85 - 5.35
#48 2.47 4.00 0.06 2.79 1.05 0.- - 3.55
#49 2.46 6.24 3.48 2.89 0.92 0.- - 0.-
#50 2.64 11.24 8.03 10.36 0.70 0.08 - 2.28
#51 2.64 7.09 5.91 1.96 8.14 0.- - 2.02
#52 2.58 5.47 7.08 1.49 2.34 0.- - 3.01
#53 1.79 5.25 6.97 5.16 9.93 0.- - 2.80
#54 3.19 6.23 7.38 3.03 9.96 2.75 - 0.-
#55 10.68 4.88 10.12 3.62 12.88 0.08 - 0.-
#56 4.65 4.60 3.31 1.91 11.21 0.02 - 0.-
#57 5.16 4.26 7.99 1.78 10.48 5.37 - 3.83
#58 6.65 10.05 5.11 8.85 3.09 5.06 - 3.25
#59 12.56 5.37 10.91 6.19 8.04 3.51 - 2.52
#60 11.23 5.44 10.33 2.50 9.09 1.68 - 3.25
#61 9.62 5.81 10.09 2.01 10.23 3.15 - 0.-
#62 4.60 11.76 8.93 11.67 8.88 2.83 - 0.-
#63 8.05 10.61 9.10 9.53 0.88 4.03 - 0.-
#64 8.92 10.44 9.97 9.50 0.54 2.03 - 0.-
#65 10.42 5.80 9.85 3.60 1.04 0.06 - 1.28
#66 8.79 8.17 9.22 8.20 11.73 0.- - 0.-
#67 8.55 8.97 9.41 9.80 9.63 0.- - 0.-
#68 1.73 9.86 10.71 9.94 6.87 4.15 - 0.-
#69 11.03 9.40 10.45 9.07 11.69 3.70 - -
#70 12.99 8.20 10.99 7.87 11.20 2.06 - -
#71 10.42 10.76 10.02 3.20 1.99 4.00 - -
#72 8.50 10.52 9.52 2.46 0.99 0.- - -
#73 10.92 11.15 10.62 12.03 0.77 0.- - -
#74 11.79 9.75 10.70 9.79 12.28 0.68 - -
#75 2.45 9.57 8.82 8.94 1.63 0.- - -
#76 9.48 11.23 9.93 10.73 1.22 4.71 - -
#77 9.45 - 9.70 11.07 1.26 0.- - -

Sum 564.98 594.66 683.40 557.84 394.78 129.15 151.41 90.21

Table I: Per-Test Distribution Entropy, in bits

●

●●●

●

●
●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

●

●

●

●
●● ●●●●●● ●●● ●● ●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●●

●

●

●
●●

●●

●
●●

●●

●●●● ●●● ●● ●●●

●

●●●●● ●

●

●

●●

●

●

●● ●●●●● ●

●

●●●●●● ●●

●

●●●●
●

●●●●
●

●●● ●

●

●●●●●

●●

●●
●

●

●

●

●●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●●
●

● ●

●

●

● ●●

●

●●

●

●

●

● ●●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●
●

●

●●

●●●●

●

●●

●

●

●

● ●

●

●●
●

●●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●●●

●

●●

●

●

●

● ●●●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●●

●●

●●

●

●

●● ●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●

●

● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●● ●

●

● ●
●

●●

●

●
●

●

●●●●●

●

●

●●

●

●

●●

●

●●● ●
●

●

●●

●●●● ●●●●● ●●

●

●● ●●● ●●

●

●●●

●

●

●●●●
●

●●●● ●●●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●●

●
●

●

● ●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●●

●
●

●

●●
●

●

●

●

●●
●

● ●

●

●

●
●●

●

●●

●

●

●

● ●● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●●
●

●● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●●●●●●●●●●●●●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

● ●
●

● ●

●

●

●
●

●

●

●●

●

●

●

● ●● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●●●●

●
●

●

●●

●

●●

●
●

●

● ●●

●

●

●●●●

●

●

●

●

●

●

●
●

●●●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●●
●

●●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●●●

●

●●

●

●

●

● ●● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●● ●●●● ●● ●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●●● ●●● ●●●●●●●●●●●●●

●

●●●●●●●
●

●●●

●

●

●●●● ●●●●●●●●●●● ●●

●

●●●

●

●●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●

●● ●

●

●

●● ●

●

●

●● ●●● ●●

●

●●●

●

●● ●●
●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●
●

●

●

●

●●
●

● ●

●

●

●

●●

●

●●

●

●

●

● ●●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●●●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●●
● ●

●
●

●

●●●●

●
●

●

●●
●

●● ●

●

●

●●●

●

●

●●●●

●

●

●

● ●

●

●●● ●●

●● ●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

● ●

●

●

●

●

●●

●●●●

●

●●

●

●
●

●●

●

●● ●

●

●

●●

●

●●
●

●

●● ●●●●● ●

●

●●● ●●● ●●

●

●●●●

●

●●● ●

●

●
●

● ●

●

●●●●●

●●

●●●● ●●● ●● ●● ●●●●●● ●●● ●● ●●●
●

●●●●

●

●

●● ●●●●●● ●●●●● ● ●●●●●●●●● ●●●●● ●●●●● ●● ●● ● ●●●●●●
●●

●

●●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●●

●

●●

●

● ●●

●●

●●●● ●●●

●

● ●●●

●

●●●● ●●

●

●

●●

●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●● ●

●

●●● ●

●

●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●● ●●●

●
●

●

●●●●

●

●

●
●

●
●●

●

●

●●● ●●● ●

●

●

● ●● ●

●

● ●● ●

●

●

●

●
●

●

●
●

●●●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●● ●●●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●

●●● ●●● ●

●

●

●●● ●

●

● ●● ●

●

●

●

● ●

●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●●

●

●
●

● ●●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

● ●

●

● ●●

●●

●●●● ●●● ●● ●●●

●

●●●●● ●
●

●

●●

●

●

●● ●●●●●●

●

●●

●

●●● ●

●●

●●●●
●

●●●● ●● ●● ●
●

●●●●●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●●

●

●● ●●●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●

●
●

● ●●●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●●

●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●

●

●●●●●●● ●●●●●●●●●●●●●●●● ●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●●

●

●●

●

● ●●

●●

●●●● ●●● ●● ●●●

●

●●●●● ●

●

●

●●

●

●

●● ●●●●● ●

●

●●●●●● ●

●●

●

●●●

●

●●●●

●

● ●● ●

●

●●●●●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●
●

●

●●
●

●

●

●

●●
●

● ●

●

●

●●● ●●● ●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●●●

●●

●●●●

●

● ●

●

● ●●

●●

●●●● ●●●

●

● ●●●

●

●●●●● ●

●

●

●●

●
●

●● ●●●●● ●

●

●●● ●● ●
●

●●

●

●

●

●

●

●●●●

●

●●● ●

●

●●●●●

●●
●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●
●●

● ●●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●

●

● ●

●

● ●●

●●

●●●●
●

●●

●

●
●

●●

●

●●●●●
●

●

●

●●

●
●

●●

●●

●●● ●

●

●●● ●●● ●●

●

●●●●

●

●

●

●

●

●

●

●

● ●

●

●●●●●

●●
●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●●

●

●●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●
●

●

● ●● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●

●

●

●

●●●●●●●●●●●●●●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●
●

● ●

●

●

●●

●

●

●●

●
●

●

● ●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●●

●

●●●●●●● ●●

●

●●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

● ●
●

● ●

●

●

●
●

●

●

●●

●
●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

● ●

●

●● ●●●

●
●

●

●●
●

●

●●

●●

●
●●

●

●

●●● ●●● ●

●

●

●●●●

●

● ●● ●

●

●

●

●
●

●
●

●

●

●
●

●●
●

●● ●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●●
●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●●

●

●

●

● ●●

●
●

● ●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

0

200

400

0.00 0.25 0.50 0.75 1.00

Correlation Threshold

E
n

tr
o

p
y
 (

in
 b

it
s
)

Figure 5: Total Raspberry Pi entropy estimate as a function

of acceptable correlation threshold

Figure 6: Cycle counts for Tests 4 and 7 on the Raspberry Pi.

Correlation coef. = −0.79. Line is the best-fit linear model.

ing other cores to communicate. (Note that the Raspberry

Pi has only a single core, but still executes this step.) We

have so far been unable to determine a causal relationship

between these two tests that might account for the extremely

odd relationship in Figure 6.

While we do not believe that the correlations between

tests are particularly helpful to an attacker (since a remote

or local but post-boot attacker will not have access to the

preceding T −1 test values), in the interests of caution, we

modify our entropy estimate as follows: for each successive

variable, add its distribution entropy to the total if and only

if, when correlated with each preceding variable in turn,

never has a correlation coefficient with magnitude ≥ 0.4. If

the variable is thus correlated with a preceding variable, we

ignore its sampled distribution entropy entirely.

When computed across the entire Raspberry Pi data set,

this conservative estimate places the summed distribution

entropy of pairwise uncorrelated variables at 231.9 bits —

far beyond the reach of exhaustive-search attacks.

Finally, to ensure that this analysis is not completely off,

we compute the distribution entropy over the entire data set

of 79-element vectors. For the 301,647 Raspberry Pi boot

measurements in our data set, every single one is unique,

594

giving a distribution entropy of 18.2 bits. Since distribution

entropy cannot extrapolate beyond the size of the empirical

data set, this is an empirical lower bound on the entropy

available by simply instrumenting the boot procedure of

Linux on the Raspberry Pi, and, given our calculations

above, we believe that there is more than sufficient entropy

available during the Raspberry Pi’s boot process to securely

seed the Linux randomness generator.

4) BeagleBoard xM: The BeagleBoard xM is powered

by a Texas Instruments DM3730 SoC, containing a 1 GHz

Cortex-A8 ARMv7 superscalar CPU core. We acquired and

modified a patched Linux 3.2.28-x142 to include 77 tests in

start_kernel.

We have less Linux boot data for the BeagleBoard than

our other systems, as we re-purposed the BeagleBoard for

other experiments, detailed in Section IV. Nevertheless, we

collected data on 3,580 boots.

Per-test distribution entropies for the BeagleBoard are in

Table I. Naively summing, these 77 tests give 594.66 bits of

entropy between them. Our correlation coefficient threshold

test reduces this slightly, to 430.06 bits. As for empirical

distribution entropy, all 3,580 boot sequences are unique,

giving a distribution entropy floor of 11.81 bits.

5) Trim-Slice: The Trim-Slice is another ARM single-

board computer, designed for use as a desktop PC. It

contains a 1 GHz NVIDIA Tegra 2 dual-core Cortex-A9

ARMv7 CPU, and a variety of storage options. To stay

consistent with our other devices, we chose to boot the Trim-

Slice from its MicroSD slot. We modified a Linux 3.1.10-

l4t.r15.02 kernel3 to include our instrumentation, and set the

machine to rebooting. Our particular model had an issue of

failing to reboot every so often, limiting our data collection

for this device.

Nevertheless, we instrumented 2,522 reboots of the Trim-

Slice, collecting cycle counts for 78 tests, similar to the

Raspberry Pi kernel. Per-test distribution entropy can be

found in Table I, giving a total sum of 683.40 bits (which,

again, may not be an accurate total estimate). Interestingly,

even though the Trim-Slice data set contains 100 times

fewer boots than the Raspberry Pi data, the per-test distri-

bution entropies are roughly similar across the board. Since

distribution entropy chronically underestimates the entropy

of the underlying distribution, this implies that the Trim-

Slice’s Tegra 2 has a much wider test variation than the

ARM 1176JZF-S, which is eminently plausible given that

the Tegra 2 is a dual-core platform and based on a Cortex-

A9, a larger and more complex core than in the Raspberry

Pi.

The Trim-Slice tests also appear to show much less cor-

relation than the Raspberry Pi. When we apply our method

of summing only the distribution entropy of variables which

2Online: https://github.com/RobertCNelson/stable-kernel
3Online: https://gitorious.org/trimslice-kernel

are not pairwise correlated with any previous test (cor. coef.

≤ 0.4), the Trim-Slice tests still show a shocking 641.48 bits

of entropy. Even if this overstates the actual amount by a

factor of 3, there is easily enough entropy extractable on

boot to seed any pseudorandom generator.

Finally, as one might expect given the data thus far, each

of the 2,522 78-element test vectors sampled on a given

Trim-Slice boot is unique, giving a total distribution entropy

of 11.30 bits. Again, this represents an empirical lower

bound, and is one which we believe is extremely low.

6) Intrinsyc DragonBoard: The Intrinsyc DragonBoard

is a fully-featured mobile device development board based

around the Qualcomm SnapDragon S4 Plus APQ8060A

SoC, which includes a Qualcomm Krait ARMv7 dual-core

CPU. Designed as a development board for Android mobile

devices, it includes hardware such as a touch screen, wi-fi

radio, and a camera module.

As a mobile device development platform, the Drag-

onBoard runs Android 4.0.4 and is backed by a Intrinsyc-

modified Linux 3.0.21 kernel. As a result, our patch set

was easy to apply. As usual, we inserted 78 tests into

start_kernel. Instead of a Linux init script for collect-

ing the data, we used the Android adb tool to connect to

the device via USB, dump the kernel logs and reboot the

device. In this way, we collected data on 27,421 boots.

In general, we see excellent entropy generation when

booting Linux on the Krait. The per-test distribution en-

tropies can be found in Figure I, with a per-test sum of

557.84 bits. As with our preceeding three ARM SoCs, each

boot sequence is unique, giving a empirical distribution

entropy of 14.74 bits. The tests are also highly uncorrelated:

applying our correlation coefficient threshold test lowers the

entropy estimate only slightly to 523.55 bits.

Resource-rich embedded devices, such as phones, have

a plethora of available sources of entropy – for example,

simply turning on one of their radios. This test, though,

shows that our entropy generation technique can protect

these devices as well.

7) FriendlyARM Mini6410: The FriendlyARM Mini6410

is yet another single-board ARM device. This particular unit

is powered by a Samsung S3C6410A SoC, and contains a

ARM 1176JZF-S ARM11 core clocked at 533 MHz. As

before, we modified the Linux 2.6.38 manufacturer-provided

kernel to instrument start_kernel, and inserted 77 tests.

Next, we let the FriendlyARM reboot 46,313 times. Inter-

estingly, the data from the FriendlyARM differs significantly

from our other ARM results.

First, the per-test distribution entropies for the Friendly-

ARM can be found in Table I. (The FriendlyARM tests are

offset by one to align identical kernel initialization functions

between devices as much as possible.) At first glance, the

per-test distribution entropies seem reasonable, given that

they are bounded above by lg(46,313) = 15.4 bits, naively

summing to 394 bits of entropy.

595

https://github.com/RobertCNelson/stable-kernel
https://gitorious.org/trimslice-kernel

The oddness arrives when we examine the distribution

entropy across boot vectors, and not just individual test

measurements. Unlike most other ARM SoC we tested, the

FriendlyARM occasionally produces identical boot vectors

on multiple independent boots. The two most common

vectors each appear 15 times in the dataset, giving a min-

entropy of 11.59 bits. In other words, a sufficiently prepared

adversary, given a single guess, can correctly predict the

FriendlyARM’s boot vector with probability 2−11.59, or

about 1 in 3,000. Given 233 guesses, this probability rises

to 2−4.7, or about 1 in every 25. However, this probabilistic

defect does not render our instrumentation worthless. Fifty-

five percent of vectors in the data set are unique, meaning

that this method can fully protect the Linux randomness

generator on the FriendlyARM over half the time, for

a negligible cost during kernel initialization. Even if the

machine does boot with a more common state, mixing in

these measurements can never reduce the amount of entropy

available to the pool, and thus will never be harmful to the

system as a whole.

One might hypothesize that there is some “common” vec-

tor, and the other popular vectors are simply approximations

thereof. However, the two most popular vectors differ in 59

of 77 positions. Also, strangely, the Mini6410 contains the

same ARM core as the Raspberry Pi, which exhibits none

of these symptoms. We can find no convincing explanation

for the observed difference between these two systems.

8) Cubox: The Cubox is a commercially available desk-

top platform, powered by the Marvell ARMADA 510 SoC

with an 800 MHz Sheeva ARMv7 superscalar CPU core. We

modified a Linux 3.6.9 kernel for the Cubox4, as before, to

include 78 tests. We then rebooted the Cubox 27,421 times.

Per-test distribution entropy for the Cubox is presented

in Table I. Interestingly, it is our only ARM SoC which has

constant-time tests, i.e., tests whose distribution entropy is

zero. It also presents less test entropy overall, with a sum

of only 129.15 bits of individual test distribution entropy.

Like the FriendlyARM, the Cubox creates non-unique

boots; the most common of these occurs 80 times (0.29%).

Only 7,857 boots are unique in our data set. The total

empirical distribution entropy of the data set is 12.53 bits,

which indicates that our technique, while not solving the

entropy-at-boot problem on the Cubox, will still help protect

the kernel’s entropy generation.

9) Linksys WRT54GL: While ARM-based embedded

devices and SoCs are becoming more and more popular,

any investigation into entropy on embedded devices would

be remiss without examining how well proposed techniques

apply to the large installed base of devices. Home routers,

which were recently shown to have insufficient entropy for

certificate generation [16], represent an enormous number of

existing devices, and, perhaps more importantly, embedded

4Online: https://github.com/rabeeh/linux.git

Figure 7: Cycle counts for Tests 18 and 19 on a WRT54GL.

Each point is one boot. Line is best-fit linear model.

devices where strong entropy sources are extremely

important (e.g., key generation). To examine these routers,

we chose the Linksys WRT54GL as our test platform.

The WRT54GL is a popular consumer 802.11B/G wire-

less router, and consists of a Broadcom BCM5352 “router-

on-a-chip”, which contains a 200 MHz MIPS32 core; 16

MiB of RAM; and 4 MiB of flash. Importantly for our

purposes, Linksys provides a custom Linux 2.4.20 kernel

which can be modified and run on the device.

The stripped-down WRT54GL kernel has fewer function

calls in start_kernel than the more modern kernels

on our ARM boards, but this is to be expected given the

simplicity of the device: the kernel needn’t contain any

extraneous code. We are able, then, to insert 24 tests in the

kernel initialization.

We then ran our modified kernel on two separate

WRT54GLs, one unmodified at 200 MHz and one over-

clocked to 250 MHz. The unmodified WRT we rebooted

81,057 times, while we rebooted the overclocked device

54,465 times. The per-test distribution entropies for the

unmodified device are in Table I. Perhaps surprisingly for

this device, these per-test entropies are quite high, up to 10

bits in some cases.

However, the correlations between tests on the WRT54GL

are far more intertwined than they are on our preceding

ARM devices. Two plots of these correlations can be seen

in Figures 7 and 8.

Unfortunately, the overall entropy performance of the

WRT54GL betrays its promising per-test entropies. Across

the 81,057 boots of our unmodified router, we only see

11.86 bits of distribution entropy, and the most common

boot sequence appears 1,247 times (10.4%). Indeed, the top

188 vectors make up 37.1% of the dataset (30,062 boots).

If this were the only source of entropy for a PRNG seed, a

motivated attacker could easily brute-force these few vectors

and succeed almost 40% of the time. Even worse, there are

596

https://github.com/rabeeh/linux.git

Figure 8: Cycle counts for Test 0 and 11 on an WRT54GL.

Each point is one boot. Line is best-fit linear model.

only 11,960 boot sequences we saw only once. If the attacker

simply checks the 4,209 vectors that she saw more than once

during her precomputation, she will succeed against 78.6%

of boots.

This unfortunate distribution shows that boot–time en-

tropy is insufficient to protect a PRNG on a standard MIPS

home router. However, it does add somewhat more than

11.86 bits, which is our observed distribution entropy across

the 24-element test result vectors. Since the process relies

solely on an already–extant hardware counter and is virtually

free, adding it to the Linux kernel boot is still worthwhile.

Overclocking: To see if we could tease further entropy

from the WRT54GL, we tried overclocking it from 200

MHz to 250 MHz, on the theory that we could change

the ratios between clocks in different parts of the SoC

and RAM. On this modified device, we performed 54,465

reboots. Overclocking does materially change each test’s

distribution: the Kolmogorov-Smirnov test for distribution

equality reports D > 0.1,P < 2.2 ·10−16 for 19 of 24 tests,

indicating that the two device’s empirical test values are

drawn from different underlying distributions. However, the

overclocked processor shows the same type of grouping as

the unmodified system, giving only 10.4 bits of distribution

entropy over the 24-element boot vectors, with the most

common appearing 879 times (1.6%).

10) Atmel NGW100 mkII: Finally, we turn to the Atmel

NGW100 mkII, a development board for the AT32AP7000-

U AVR32 microprocessor. AVR32 processors are designed

to be small, low-cost, and low-power: in some sense, it’s

one of the smallest microprocessors capable of running

Linux. Designed to prototype network gateway devices, the

NGW100 mk II ships with multiple Ethernet connectors,

internal flash storage, and an SD card slot. To maintain

consistency, we booted the NGW100 mkII off an SD card.

We modified and built a patched Linux 2.6.35.4 kernel

using the Atmel AVR32 Buildroot system, adding 69 tests

to start_kernel. Then, via an RS-232 console, we

rebooted the board 38,157 times. The per-test distribution

entropy can be found, as usual, in Table I.

As befits our hypothesis that simpler processors produce

more constant results, 28 of the 69 tests have absolutely no

variation at all. Most of these functions are simply empty, as

the AVR32 is simple enough to not need their services (e.g.,

setup_nr_cpu_ids is a no-op, as there are no multi-core

AVR32 systems), but others do various memory initialization

tasks. The constant execution time of these functions speaks

to the minimal nature of the system as a whole.

Perhaps not surprisingly, this simplicity takes a toll on the

entropy generated during the boot process. Indeed, in our

data set, we see only 418 unique 69-element boot vectors;

the least frequent of which appears 43 times (0.1%), while

the most frequent appears 314 times (0.8%). This suggests

rather strongly that we have collected every possible vari-

ation of test times the device will generate under standard

operating conditions. The empirical distribution entropy of

our data set is 8.58 bits; this is likely all the entropy that

can be extracted from timing the NGW100 mkII boot.

III. ARCHITECTURAL CAUSES OF TIMING VARIATION

In this section, we describe two physical mechanisms

that partly explain the non-determinism we measured during

the execution of early kernel code: communication latency

(variation that can arise while sending data between two

clock domains) and memory latency (variation that arises

due to interactions with DRAM refresh). We give evidence

that these mechanisms are involved. We stress that these two

mechanisms only partly explain the behavior we observed.

Other mechanisms we do not understand are likely also

involved; we hope that future work can shed more light on

the situation.

A. Clock domain crossing

Modern embedded processors contain multiple clock do-

mains, and due to misalignment between the domains, the

amount of time it takes to send messages between two clock

domains can vary.

Processor designs use multiple clock domains to allow

different portions of the chip to run at different frequency.

For instance, on the BeagleBoard xM, the ARM Cortex-A8

runs at 1 GHz, the peripheral interconnect runs at 200 MHz,

and the Mobile DDR memory runs at 166 MHz [36].

At each boundary between two domains, chip designers

must use specialized mechanisms to ensure reliable commu-

nication. The most common solution to this problem is an

asynchronous FIFO (or queue) that enqueues data according

to one clock and dequeues it according to a second clock.

To see how an asynchronous FIFO can give rise to latency

variation, consider the case when the FIFO is empty and the

output domain tries to dequeue data at the same moment

the input domain inserts data. If the input domain’s clock

597

Memory (533 MHz)

Second Level Interconnect

(100 MHz)

Ethernet (125 MHz)

Processor (1 GHz)

GFX (500 MHz)

Clock Control (50 MHz)

First Level Interconnect (200MHz)

Figure 9: Clock domains similar to the domains found on

the DM3730. In order for the processor to modify a register

in the Ethernet controller, it must cross the clock domains

of the first and second level interconnects.

arrives first, the dequeue will succeed. If the output domain’s

clock arrives first, the dequeue fails and will occur one

clock period later. If they arrive at precisely the same time,

metastability can result, which will also result in delay.

Because of random (and mostly independent) variation in

when the two clock signals arrive at the asynchronous FIFO

(i.e., clock jitter), any of these orderings is possible and

communication latency will vary.

Interactions between different clocks and metastability are

well-known sources of very high-quality randomness [5, 25,

34], so it is tempting to try to exploit the domain crossing

that already exist in a design to generate random bits.

In order to observe to interactions between clocks on

our device, we instrumented code to measure the latency

of communication between different clock domains. On

the BeagleBoard xM, there are two on-chip-buses that

connect peripherals, similar to the diagram on Figure 9.

The processor, peripherals and interconnects are clocked by

several different PLLs. For the processor to communicate

with peripherals on the SoC, the processor must cross these

clock domains. Our approach was to measure the variation in

latency in communication devices with an increasing number

of clock domain crossings. Specifically, we measured the

number of cycles it took to perform to complete a set of

instructions which did not cross the interconnect (two NOP

instructions), to cross the first level interconnect (reading

the revision number register of the memory controller) and

to cross the second level interconnect (reading the revision

number register of the system clock controller).

Our results are shown in Figure 10. Variability in fre-

quency increases with the number of clock domains crossed.

At two clock domain crossings, the distribution is bimodal.

While there may be some serial correlation between repeated

runs, this indicates that a read from the second level inter-

connect can provide up to around 2 bits of entropy. Reads

from this register are also fast: at an average of 270 cycles,

millions of these reads can be performed each second.

0.00

0.25

0.50

0.75

1.00

0 4 8

Cycle delta

F
re

q
u

e
n

c
y

data

NOP

GPMC

CM

Figure 10: Execution latency for two NOP instructions

(NOP), a read from the general purpose memory controller

(GPMC), and a read from the clock manager (CM). Cycle

delta is the difference from the minimum cycles observed.

B. DRAM Access Latency

A second source of variation in performance is interac-

tions between main memory (i.e., DRAM) accesses, DRAM

refresh, and the memory controller. Because DRAM bits de-

cay over time, the system must periodically read and re-write

each DRAM storage location. Depending on the system, the

processor’s memory controller issues refresh commands or,

alternately, the processor can place the chips in an auto-

refresh mode so they handle refresh autonomously.

Regardless of who manages it, the refresh process cycles

through the DRAM row-by-row, and an incoming memory

access (e.g, to fetch part of the kernel for execution) may

have to wait for the refresh to complete.

To measure the effect of refresh on execution timing,

we used hardware performance counters to measure the

number of cycles it took to execute a series of 64 NOP

instructions on a ARM Cortex-A9 [39] with the instruction

cache disabled 100,000 times. We then used a software

register to turn refresh off and performed the test again. The

results of our test are plotted in Figure 12. The variation

in execution latency was much greater with refresh turned

on: with refresh on, execution fell into 6 bins, with ≈80%

distributed at the mode and ≈20% distributed in the other 5

bins. With refresh off, over 99% of executions fell into the

mode with less than 1% distributed in two other bins.

While refresh itself may appear to induce random distri-

butions in our experiment, the state machines in the memory

controller and the DRAM chips that manage refresh are

deterministic, as is the execution of code on the CPU

that generates requests. If the rest of the system were

deterministic as well, we expect that DRAM accesses would

have deterministic latencies.

However, other sources of randomness can affect the rela-

tionship between the processor and the DRAM refresh state

machines. For instance, the PLL for the DRAM controller

may “lock” more quickly than the processor’s PLL at system

(see 4 in Figure 11) boot or the DRAM controller’s power

supply may take longer to stabilize at start up (see 1 in

598

VDD_OK

SYS_CLK

CLK_OK

PLL_OUT

MEM_PLL

VDD

1 2 3 4 5

Figure 11: Power and clocks on the startup of a typical

embedded system. At 1 , the voltage is ramped up until it is

stable, which can take a variable amount of time. At 2 , The

system oscillator is turned on and takes a variable amount

of time to stabilize. At 3 , the PLLs that source the high

frequency clocks for the processor (PLL_OUT) and memory

(MEM_PLL) are turned on and take a variable amount of

time to stabilize. At 4 , the time that the memory clock

and processor clocks cross is variable but fully determined

by the time that both PLLs stabilize. At 5 , a small amount

of jitter in the memory clock causes the position the clocks

cross to change.

0

25000

50000

75000

100000

400 500 600

Cycles

F
re

q
u

e
n

c
y Refresh

off

on

Figure 12: Execution latency with refresh on and off.

Figure 11). In this case, the future interactions between the

processor and refresh state machine will be affected, and the

latency for DRAM accesses will vary slightly. In addition to

variation in the system’s initial conditions, randomness from

clock domain crossing can further perturb the interaction

between the processor and memory.

IV. DRAM DECAY

Ultimately, the most useful source of randomness we

found in these system is the decay of data stored in DRAM

over time. DRAM decay occurs when the charge that stores a

binary value leaks off the capacitor in a DRAM storage cell.

This phenomenon is well-studied, and the refresh process

(described in III-B) is designed to mitigate it.

Figure 13: Decay of DRAM after 7 (Blue), 14 (Green), 28

(Yellow) and 56 (Red) seconds.

A. Disabling Refresh

In order to detect decay in a live system, we must prevent

the system from refreshing DRAM. The ability to disable

refresh on the memory controller is not an exotic feature:

Nearly every memory controller we looked at supported

disabling refresh, and every embedded SoC we looked at,

from the Broadcom BCM5352 found in the WRT54GL to

the DM3730 on the BeagleBoard xM had software tunable

parameters for controlling refresh [36, 39]. Typically, control

over refresh is used to implement sleep modes. When a

processor enters a sleep mode, it disables refresh on the

memory controller and sends a command to the DRAM

chips to enter “self-refresh” mode, forcing the DRAM chips

refresh themselves as needed. By turning off refresh on

the memory controller and not sending the “self-refresh”

command, we were able to observe decay in our test systems.

B. Decay

The decay rate of DRAM bits varies widely (a fact

exploited by “cold boot” techniques [13]) as a result of

manufacturing variation, temperature, the data stored in the

cell, and other factors. In our experiments, some bits will

decay quickly (e.g., on the order of hundreds of µs) while

others will retain their data for seconds or hours. We find that

the rate at which bits decay varies with even small variations

in temperature (see Section IV-D2).

C. Experimental Setup

Our approach to harvesting randomness from DRAM is

as follows. Very early in the boot process (i.e., in the boot

loader) we write test data to a portion of DRAM, and

then disable the refresh mechanism in both the processor’s

memory controller and the DRAM chips. The processor then

waits several seconds, reads the data back, and XORs it

with pattern written initially. Any flipped bits will appear at

this stage. After this process, the bootloader can re-enable

refresh, reinitialize DRAM, and continue loading as normal.

599

●●●
●●●

●●
●●●

●●
●●
●●●
●●
●●
●●●
●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●●
●●●
●●
●●●
●●
●●
●●●
●●●
●●
●●
●●●
●●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●
●●
●●
●●●
●●

●●
●●

●●●
●●●

●●●
●●●

●●
●●●

●●
●●●

●●●●●●● ●●●
●
●●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●
●●●●●
●●●●●●●●●●●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●●
●●
●●●●●
●●●●●●●●●●
●●●
●●●●●
●●●●●●●●●●●
●●●●●●
●
●●●●
●●●●●
●●●●
●●
●●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●
●●

●

●

●

●

●
●
●●●●●●●●●●

0.00

0.25

0.50

0.75

1.00

Bit Location (ordered by P(decay at 28s))

P
(d

e
c
a
y
)

Delay

●

●

●

28s

14s

7s

Figure 14: Probability of decay, per bit, for non-refresh times of 7s, 14s, and 28s. Ordered by Pr(decay) at 28s.

Figure 15: Probability of decay after one minute.

Next, we modified both layers of U-Boot, as well as the

Linux kernel, to incorporate the generated entropy into the

kernel randomness pools. We use a custom extracting hash

to condense the memory decay into 1,024 bits, and pass

the result into the kernel as a base-64-encoded parameter.

Overall, hashing and processing takes less than second, on

top of the unavoidable multiple-second DRAM decay time.

D. Results

1) Decay Probability and Distribution: Although we

could reliably observe many bits decaying, the distribution

of decay was not uniform. Figure 15 shows the distribution

of decay probabilities at 58 seconds. The values range from

0 (white) to very low (green) to near certainty (red). The

figure also shows that some areas of the DRAM do not

appear to decay at all.

The horizontal bands in the figure are due to the test

pattern initially written to memory. We wrote 0xAA to the

top quarter of memory, 0x00 to the next quarter, 0xFF to the

next, and 0x55 to the last quarter. In the areas which show no

decay, the pattern (0x00 or 0xFF) matched the cell’s “ground

state” (i.e., the state into which the cell naturally decays).

●●●
● ●●
● ●

●
● ●●

●●
●●

●●●●
●●●
● ●●●●

●●● ●●●●
●●

●●
●

●
●

●
●●

●
●

●
● ●

●●●●● ●●●●●●●●● ●

●
● ●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●●● ●●● ●●●● ●●●● ●●●● ●●●●● ●●●●● ●●●
●

●●●●
●●

●●●● ●● ●●
● ●
●●●●
●

●
●

●● ●●
●●● ●
●●●

●
● ●
●
●●
●
● ●●●

●
●●●
● ●●●●● ●●●●●●●●
●
●
●
●●●
●
●● ●●●●●
●
●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●● ●●●● ●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●
●
●●●●●● ●●●● ●●●●
●
●●●● ●
●
●●● ●●● ●●●●●
●

●●●●●●●●●
●
●●● ●● ●●●● ●●●● ●●

●
● ●●●● ●●●● ●●●● ●
●●
● ●●●● ●●●●

●
●●●
●

●●●●●●● ●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●● ●●● ●●

●

●

●

●

●
●●●●●●●●●

●
●

●●●
●

●
●

●

●

●

10
2

10
3

10
4

10
5

10
6

0 20 40 60 80

Temperature (°C)

B
it
 e

rr
o

rs

Figure 16: Relationship between temperature and DRAM

decay over a constant period.

This can vary because chips use different voltages for “0”

and “1” in different portions of the chip.

Figure 13 shows decay over time. The yellow bits decayed

first and the red bits decayed last. Unsurprisingly, the

longer the interval, the more bit errors occur and the more

randomness we are able to extract. In Figure 14, each bit’s

probability of decay over 7, 14, and 28 seconds has been

graphed. Perhaps unsurprisingly, every bit that ever decays

within 7 seconds has a 100% chance of decaying in 14 or

28 seconds. Interestingly, a number of bits with a non-zero

probability of decaying in 14 seconds don’t always decay by

28 seconds, indicating that DRAM bits don’t simply decay

in a set order, and can provide true entropy.

2) Temperature Dependence: Previous work has shown

that decay varies with DRAM temperature. To compensate,

many systems increase the refresh frequency as temperature

increases [21, 35]. Primarily, this is due to the increase in

DRAM cell leakage as temperature rises [21]. To understand

the effect of this temperature dependence on the probability

of decay, we set up an experimental protocol that allowed

us to control the temperature of DRAM. By submerging

600

DRAM in non-conductive isopropyl alcohol inside a refrig-

erator and using an aquarium heater, we were able to control

the DRAM temperature to ±1 ◦ C. For temperatures above

35 ◦ C, we used a laboratory oven to measure decay at high

temperatures.

Our results are shown in figure 16. We find that at low

temperatures, the few bits which decay are consistent (i.e.

the same bits always decay). Around 20 ◦ C, we begin to see

bits that sometimes decay. At room temperature (23 ◦ C), we

begin to see an exponential rise in bit decay.

3) DRAM Temperature Modification: We can generate

more randomness by increasing the temperature of the

DRAM chip. To accomplish this we wrote a simple ‘power

virus’ that attempts to maximize DRAM power consumption

and heat dissipation. The virus initializes a region of DRAM

and then reads repeatedly from different addresses. The

initial data and the addresses are choosen to maximize the

transition frequency on the DRAM pins.

We find that by implementing our power virus, we heat

up the DRAM from 26 ◦ C to 29 ◦ C within 1 minute. We

run the power virus while waiting for bits to decay.

4) Variability: In addition to randomness in bit decay

between boots, we also observed two kinds of variability

between individual boards: Decay probability variability, the

variability in the probability that different bits will decay;

and cold state variability, the variability in the initial contents

of DRAM after a cold boot.

This variability is due to manufacturing variations that

cause DRAM cells to leak at different rates, leading to the

decay probability variability we observe. Process variations

in the sense amplifiers (which convert the analog values

from the DRAM bits into logical “0”s and “1”s) is also

well documented [15], and probably contributes as well.

The variation in the DRAM’s contents from a cold boot

(measured after the device was powered off for 3 days) can

provide a unique fingerprint for each board. For instance, at

25−28 ◦ C with a delay of 7s, on one BeagleBoard, a certain

10 bits always decay, while the other BeagleBoard has only

6 such bits. The two sets are disjoint; that is, the bits that

decay on one board do not decay on the other.

Under the assumption that, due to process variation, the

placement of these “leaky” bits is independent between

different DRAM modules, the locations of leaky bits act

as a fingerprint for a particular BeagleBoard. Verifying this

assumption about the distribution of leaky bits would require

access to more systems than we have, and we leave it to

future work.

E. Extracting per-boot randomness from DRAM

The location of leaky bits cannot, by itself, be the basis

for random number generation. An attacker who has physical

access, who can mount a remote code-injection exploit, or

can otherwise run software on the device will be able to

locate its leaky bits. Therefore, we must examine the bits

that sometimes decay and sometimes do not.

We now give a rough estimate for the amount of entropy

available in the decay of these bits. Our analysis makes

the assumption that bits decay independently of each other.

This is a strong assumption and there evidence that it is at

least partly false, e.g., Section 3.3 of [13]. Accordingly, the

entropy estimates below are overestimates. We hope future

work can provide a better measure of available entropy.

We estimate Pr[decay] for each bit based on our experi-

ments and use this probability to compute the information

theoretic entropy content for this bit:

E(p) =−
(

p · lg(p)+(1− p) · lg(1− p)
)

(3)

Under the assumption that bits decay independently of each

other, we can simply sum this distribution entropy over every

bit we saw decay.

For a BeagleBoard xM at 25-27 ◦C and with a decay time

of 7 s, we obtain a total boot-time entropy estimate of 4.9

bits, largely due to the fact that only 19 memory decays ever

happen, and 16 of these happen with p > 0.9 or p < 0.1. For

a decay time of 14s, we see 511 bits ever decay, and sum-

ming their entropy contributions gives an entropy estimate

of 209.1 bits. For a delay of 28s, 9,943 bits decay, for an

estimated entropy of 8,415.16 bits. For 56 seconds, we see

427,062 decays, for an estimated entropy of 98,611.85 bits.

A delay of even 14s on first boot is unacceptable in many

applications. Moreover, because DRAM decay depends on

temperature, this approach may not provide security in very

cold conditions — for example, phones used on a ski slope.

V. PLL LOCK LATENCY

The PLLs that produce the on-chip clocks in modern

processors are complex, analog devices. When they start up

(or the chip reconfigures them), they take a variable amount

of time to “lock” on to the new output frequency (see 3 in

Figure 11). This variation in lock time is due to a number of

factors, including stability of the power supply, accuracy and

jitter in the source oscillator, temperature, and manufacturing

process variation [17]. Repeatedly reconfiguring an on-chip

PLL and measuring how long it takes to lock will result in

random variations.

SoCs typically contain several PLLs used to derive clocks

for the processor, memory and peripherals. On the Beagle-

Board xM, the DM3730 contains 5 DPLLs (Digital Phase

Locked Loops). Each DPLL can be reconfigured and toggled

via a software register, and a status flag and interrupt will

signal when a DPLL is locked. To measure the time it

takes to acquire a lock, we instrumented code to disable

the DPLL for the USB peripheral clock on the BeagleBoard

xM. Using the hardware performance counter, we measured

the number of cycles it took for the DPLL to reacquire a

lock (Figure 17).

601

0

 200K

 400K

8200 8400 8600 8800

Cycles

#
 S

a
m

p
le

s

Figure 17: DPLL lock latency histogram measured by the

performance counter on the BeagleBoard xM.

We obtain about 4.7 bits of entropy every time we re-lock

the DPLL, and it takes at most approximately 9000 cycles

(9µs) for the DPLL to re-lock. Using the DPLL lock latency,

we can obtain about 522 KiB of pure entropy per second.

DPLL lock latency could be easily polled for entropy

during early boot when the SoC first sets up the clocks and

PLLs in the system. Since the DPLL is affected by analog

conditions such as temperature, a determined attacker may

be able to induce bias in the lock time.

VI. CONCLUSION

Randomness is a fundamental system service. A system

cannot be said to have successfully booted unless it is ready

to provide high-entropy randomness to applications.

We have presented three techniques for gathering entropy

early in the boot process. These techniques provide different

tradeoffs along three metrics: how high the bitrate, how

specific to a particular system, and how well explained by

unpredictable physical processes.

Our first technique, which times the execution of kernel

code blocks, provides a moderate amount of entropy and is

easily applied to every system we examined, but we are able

to give only a partial account for the source of the entropy

it gathers.

Our second technique, DRAM decay, provides a large

amount of entropy, but presents a heavy performance penalty

and is tricky to deploy, relying on details of the memory

controller. Its advantage is a physical justification for the

observed randomness.

Our third technique, timing PLL locking, promises the

highest bitrate and is well supported by physical processes,

but its implementation requires intimate knowledge of the

individual SoC.

We implemented and characterized these techniques on

a broad spectrum of embedded devices featuring a variety

of popular SoCs and hardware, from resource-rich mobile

phone hardware to devices that aren’t much more than

an ethernet port and a SoC. While these three techniques

certainly can be applied to traditional desktop systems as

well as more powerful embedded devices, in some sense,

our tiny embedded systems start at a disadvantage. Wireless

devices can read randomness from radios; desktops can rely

on saved entropy from previous boots. Our work focuses

on adequately protecting headless, resource-poor embedded

devices, which must acquire strong entropy on their very

first boot, before they can even export network connectivity.

Our work leaves many questions open. We are able to

give only a partial explanation for the entropy we observed

in our first technique, and only a partial characterization of

the DRAM decay effects in our second technique. We hope

that future work can shed more light on the situation. More

work is also necessary to understand how much the gathered

entropy depends on environmental factors that might be

under adversarial control.

The three techniques we present exploit just a few of the

many potential architectural sources of randomness available

in modern systems. Other possible sources of entropy, which

we hope will be explored in future work, include voltage

scaling latency, GPIO pin voltage, flash memory corruption

patterns, and power supply stabilization latency.

Our three techniques are all, ultimately, workarounds for

the lack of dedicated hardware random number generators

in embedded architectures. What will spur the adoption of

such hardware, by both hardware and software developers?

What is the right way to specify such hardware for the

ARM architecture, where a high-level core description is

licensed to many processor manufacturers? Furthermore, is

it possible to verify that such a unit is functioning correctly

and free of backdoors?

ACKNOWLEDGMENTS

We thank Daniel J. Bernstein, J. Alex Halderman, Nadia

Heninger, and Eric Rescorla for their comments and sugges-

tions.

We would like to thank Xilinx for donating hardware.

This material is based upon work supported by the Na-

tional Science Foundation under Grants No. CNS-0831532,

CNS-0964702, DGE-1144086, and by the MURI program

under AFOSR Grant No. FA9550-08-1-0352.

REFERENCES

[1] E. Barker and J. Kelsey, “Recommendation for random num-
ber generation using deterministic random bit generators,”
NIST Special Publication 800-90A, Jan. 2012, online: http://
csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf.

[2] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev,
H. Shacham, and S. Yilek, “Hedged public-key encryption:
How to protect against bad randomness,” in Asiacrypt 2009.
Springer, Dec. 2009.

[3] J. Bouda, J. Krhovjak, V. Matyas, and P. Svenda, “Towards
true random number generation in mobile environments,” in
NordSec 2009. Springer, Oct. 2009.

[4] E. Brickell, “Recent advances and existing research questions
in platform security,” Invited talk at Crypto 2012, Aug. 2012.

[5] J.-L. Danger, S. Guilley, and P. Hoogvorst, “High speed
true random number generator based on open loop structures

602

http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf

in FPGAs,” Microelectronics Journal, vol. 40, no. 11, Nov.
2009.

[6] D. Davis, R. Ihaka, and P. Fenstermacher, “Cryptographic
randomness from air turbulence in disk drives,” in Crypto
1994. Springer, Aug. 1994.

[7] L. Dorrendorf, Z. Gutterman, and B. Pinkas, “Cryptanalysis
of the random number generator of the Windows operating
system,” ACM Trans. Info. & System Security, vol. 13, no. 1,
Oct. 2009.

[8] D. Eastlake 3rd, S. Crocker, and J. Schiller, “Randomness
Recommendations for Security,” RFC 1750 (Informational),
Internet Engineering Task Force, Dec. 1994, obsoleted
by RFC 4086. [Online]. Available: http://www.ietf.org/rfc/
rfc1750.txt

[9] V. Fischer and M. Drutarovský, “True random number gener-
ator embedded in reconfigurable hardware,” in CHES 2002.
Springer, 2003.

[10] I. Goldberg and D. Wagner, “Randomness and the Netscape
browser,” Dr. Dobb’s Journal, Jan. 1996.

[11] P. Gutmann, “Software generation of practically strong ran-
dom numbers,” in USENIX Security 1998. USENIX, Jan.
1998.

[12] Z. Gutterman, B. Pinkas, and T. Reinman, “Analysis of
the Linux random number generator,” in IEEE Security and
Privacy (“Oakland”) 2006. IEEE Computer Society, May
2006.

[13] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson,
W. Paul, J. A. Calandrino, A. J. Feldman, J. Appelbaum,
and E. W. Felten, “Lest we remember: Cold boot attacks on
encryption keys,” in USENIX Security 2008. USENIX, Jul.
2008.

[14] M. Hamburg, P. Kocher, and M. E. Marson, “Analysis
of Intel’s Ivy Bridge digital random number generator,”
Online: http://www.cryptography.com/public/pdf/Intel_TRN
G_Report_20120312.pdf, Mar. 2012.

[15] R. Heald and P. Wang, “Variability in sub-100 nm SRAM
designs,” in ICCAD 2004. IEEE Computer Society, Nov.
2004.

[16] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
“Mining your Ps and Qs: Detection of widespread weak keys
in network devices,” in USENIX Security 2012. USENIX,
Aug. 2012.

[17] P. Heydari, “Analysis of the PLL jitter due to power/ground
and substrate noise,” IEEE Trans. Circuits and Systems I,
vol. 51, no. 12, Dec. 2004.

[18] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-up SRAM
state as an identifying fingerprint and source of true random
numbers,” IEEE Trans. Computers, vol. 58, no. 9, Sep. 2009.

[19] A. Hubert and R. van Mook, “Measures for Making
DNS More Resilient against Forged Answers,” RFC 5452
(Proposed Standard), Internet Engineering Task Force, Jan.
2009. [Online]. Available: http://www.ietf.org/rfc/rfc5452.txt

[20] M. Jakobsson, E. Shriver, B. K. Hillyer, and A. Juels, “A
practical secure physical random bit generator,” in CCS 1998.
ACM, Nov. 1998.

[21] DDR3 SDRAM Standard JESD79-3F, JEDEC Committee JC-
42.3, Jul. 2012, online: www.jedec.org/sites/default/files/do
cs/JESD79-3F.pdf.

[22] D. Kaminsky, “Black ops 2008: It’s the end of the cache
as we know it,” Black Hat 2008, Aug. 2008, presentation.
Slides: https://www.blackhat.com/presentations/bh-jp-08/
bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS
08-BlackOps.pdf.

[23] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Cryptanalytic

attacks on pseudorandom number generators,” in FSE 1998.
Springer, Mar. 1998.

[24] J. Kelsey, B. Schneier, and N. Ferguson, “Yarrow-160: Notes
on the design and analysis of the Yarrow cryptographic
pseudorandom number generator,” in SAC 1999. Springer,
2000.

[25] P. Kohlbrenner and K. Gaj, “An embedded true random
number generator for FPGAs,” in FPGA 2004. ACM, Feb.
2004.

[26] P. Lacharme, A. Röck, V. Strubel, and M. Videau, “The Linux
pseudorandom number generator revisited,” Cryptology ePrint
Archive, Report 2012/251, 2012, http://eprint.iacr.org/.

[27] N. McGuire, P. O. Okech, and Q. Zhou, “Analysis of inherent
randomness of the Linux kernel,” in RTLW 2009. OSADL,
Sep. 2009, online: http://lwn.net/images/conf/rtlws11/random
-hardware.pdf.

[28] T. Mytkowicz, A. Diwan, and E. Bradley, “Computer systems
are dynamical systems,” Chaos, vol. 19, no. 3, Sep. 2009.

[29] N. Nisan and A. Ta-Shma, “Extracting randomness: A survey
and new constructions,” J. Computer and System Sciences,
vol. 58, no. 1, Feb. 1999.

[30] C. Pyo, S. Pae, and G. Lee, “DRAM as source of random-
ness,” Electronics Letters, vol. 45, no. 1, 2009.

[31] T. Ristenpart and S. Yilek, “When good randomness goes bad:
Virtual machine reset vulnerabilities and hedging deployed
cryptography,” in NDSS 2003. Internet Society, Feb. 2003.

[32] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker,
S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert,
J. Dray, and S. Vo, “A statistical test suite for random
and pseudorandom number generators for cryptographic ap-
plications,” NIST Special Publication 800-22, Revision 1a,
Apr. 2010, online: http://csrc.nist.gov/groups/ST/toolkit/rng/
documents/SP800-22rev1a.pdf.

[33] A. Seznec and N. Sendrier, “HAVEGE: A user-level software
heuristic for generating empirically strong random numbers,”
ACM Trans. Modeling & Computer Simulation, vol. 13, no. 4,
Oct. 2003.

[34] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure
true random number generator with built-in tolerance to active
attacks,” IEEE Trans. Computers, vol. 56, no. 1, Jan. 2007.

[35] M. Technology, MT41J256M4 DDR3 SDRAM Datasheet, Rev.
I, Feb. 2010, online: http://download.micron.com/pdf/datash
eets/dram/ddr3/1Gb_DDR3_SDRAM.pdf.

[36] AM/DM37x Multimedia Device Silicon Revision 1.x Version
R Technical Reference Manual, Texas Instruments, Sep. 2012,
online: http://www.ti.com/lit/ug/sprugn4r/sprugn4r.pdf.

[37] The Debian Project, “openssl – predictable random number
generator,” DSA-1571-1, May 2008, http://www.debian.org/
security/2008/dsa-1571.

[38] J. Voris, N. Saxena, and T. Halevi, “Accelerometers and
randomness: Perfect together,” in WiSec 2011. ACM, Jun.
2011.

[39] Zynq-7000 All Programmable SoC Technical Reference
Manual, Version 1.3, Xilinx, Oct. 2012, online:
http://www.xilinx.com/support/documentation/user_guides/
ug585-Zynq-7000-TRM.pdf.

[40] S. Yilek, “Resettable public-key encryption: How to encrypt
on a virtual machine,” in CT-RSA 2010. Springer, Mar. 2010.

[41] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage,
“When private keys are public: Results from the 2008 Debian
OpenSSL vulnerability,” in IMC 2009. ACM, Nov. 2009.

603

http://www.ietf.org/rfc/rfc1750.txt
http://www.ietf.org/rfc/rfc1750.txt
http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
http://www.cryptography.com/public/pdf/Intel_TRNG_Report_20120312.pdf
http://www.ietf.org/rfc/rfc5452.txt
www.jedec.org/sites/default/files/docs/JESD79-3F.pdf
www.jedec.org/sites/default/files/docs/JESD79-3F.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
http://eprint.iacr.org/
http://lwn.net/images/conf/rtlws11/random-hardware.pdf
http://lwn.net/images/conf/rtlws11/random-hardware.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/1Gb_DDR3_SDRAM.pdf
http://download.micron.com/pdf/datasheets/dram/ddr3/1Gb_DDR3_SDRAM.pdf
http://www.ti.com/lit/ug/sprugn4r/sprugn4r.pdf
http://www.debian.org/security/2008/dsa-1571
http://www.debian.org/security/2008/dsa-1571
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
http://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

