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Abstract—The web has become an essential part of our
society and is currently the main medium of information
delivery. Billions of users browse the web on a daily basis, and
there are single websites that have reached over one billion
user accounts. In this environment, the ability to track users
and their online habits can be very lucrative for advertising
companies, yet very intrusive for the privacy of users.

In this paper, we examine how web-based device fingerprint-
ing currently works on the Internet. By analyzing the code
of three popular browser-fingerprinting code providers, we
reveal the techniques that allow websites to track users without
the need of client-side identifiers. Among these techniques, we
show how current commercial fingerprinting approaches use
questionable practices, such as the circumvention of HTTP
proxies to discover a user’s real IP address and the installation
of intrusive browser plugins.

At the same time, we show how fragile the browser ecosystem
is against fingerprinting through the use of novel browser-
identifying techniques. With so many different vendors involved
in browser development, we demonstrate how one can use
diversions in the browsers’ implementation to distinguish
successfully not only the browser-family, but also specific major
and minor versions. Browser extensions that help users spoof
the user-agent of their browsers are also evaluated. We show
that current commercial approaches can bypass the extensions,
and, in addition, take advantage of their shortcomings by using
them as additional fingerprinting features.

I. INTRODUCTION

In 1994, Lou Montulli, while working for Netscape Com-

munications, introduced the idea of cookies in the context

of a web browser [1]. The cookie mechanism allows a web

server to store a small amount of data on the computers of

visiting users, which is then sent back to the web server

upon subsequent requests. Using this mechanism, a website

can build and maintain state over the otherwise stateless

HTTP protocol. Cookies were quickly embraced by browser

vendors and web developers. Today, they are one of the core

technologies on which complex, stateful web applications

are built.

Shortly after the introduction of cookies, abuses of their

stateful nature were observed. Web pages are usually com-

prised of many different resources, such as HTML, images,

JavaScript, and CSS, which can be located both on the web

server hosting the main page as well as other third-party web

servers. With every request toward a third-party website,

that website has the ability to set and read previously-set

cookies on a user’s browser. For instance, suppose that

a user browses to travel.com, whose homepage includes

a remote image from tracking.com. Therefore, as part of

the process of rendering travel.com’s homepage, the user’s

browser will request the image from tracking.com. The

web server of tracking.com sends the image along with an

HTTP Set-Cookie header, setting a cookie on the user’s

machine, under the tracking.com domain. Later, when the

user browses to other websites affiliated with tracking.com,

e.g., buy.com, the tracking website receives its previously-

set cookies, recognizes the user, and creates a profile of

the user’s browsing habits. These third-party cookies, due

to the adverse effects on a user’s privacy and their direct

connection with online behavioral advertising, captured the

attention of both the research community [2], [3], [4] and the

popular media outlets [5] and, ever since, cause the public’s

discomfort [6], [7].

The user community responded to this privacy threat in

multiple ways. A recent cookie-retention study by com-

Score [8] showed that approximately one in three users

delete both first-party and third-party cookies within a month

after their visit to a website. Multiple browser-extensions

are available that reveal third-party tracking [9], as well as

the “hidden” third-party affiliations between sites [10]. In

addition, modern browsers now have native support for the

rejection of all third-party cookies and some even enable

it by default. Lastly, a browser’s “Private Mode” is also

available to assist users to visit a set of sites without leaving

traces of their visit on their machine.

This general unavailability of cookies motivated advertis-

ers and trackers to find new ways of linking users to their

browsing histories. Mayer in 2009 [11] and Eckersley in

2010 [12] both showed that the features of a browser and its

plugins can be fingerprinted and used to track users without

the need of cookies. Today, there is a small number of com-

mercial companies that use such methods to provide device
identification through web-based fingerprinting. Following

the classification of Mowery et al. [13], fingerprinting can

be used either constructively or destructively. Constructively,
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a correctly identified device can be used to combat fraud,

e.g., by detecting that a user who is trying to login to a

site is likely an attacker who stole a user’s credentials or

cookies, rather than the legitimate user. Destructively, device

identification through fingerprinting can be used to track

users between sites, without their knowledge and without

a simple way of opting-out. Additionally, device identifica-

tion can be used by attackers in order to deliver exploits,

tailored for specific combinations of browsers, plugins and

operating systems [14]. The line between the constructive

and destructive use is, however, largely artificial, because

the same technology is used in both cases.

Interestingly, companies were offering fingerprinting ser-

vices as early as 2009, and experts were already voicing

concerns over their impact on user privacy [15]. Even when

fingerprinting companies honor the recently-proposed “Do

Not Track” (DNT) header, the user is still fingerprinted for

fraud detection, but the companies promise not to use the

information for advertising purposes [16]. Note that since

the fingerprinting scripts will execute regardless of the DNT

value, the verification of this promise is much harder than

verifying the effect of DNT on stateful tracking, where the

effects are visible at the client-side, in a user’s cookies [17].

In this paper, we perform a four-pronged analysis of

device identification through web-based fingerprinting. First,

we analyze the fingerprinting code of three large, commer-

cial companies. We focus on the differences of their code in

comparison to Panopticlick [12], Eckersley’s “open-source”

implementation of browser fingerprinting. We identify the

heavy use of Adobe Flash as a way of retrieving more sensi-

tive information from a client, including the ability to detect

HTTP proxies, and the existence of intrusive fingerprinting

plugins that users may unknowingly host in their browsers.

Second, we measure the adoption of fingerprinting on the

Internet and show that, in many cases, sites of dubious

nature fingerprint their users, for a variety of purposes.

Third, we investigate special JavaScript-accessible browser

objects, such as navigator and screen, and describe

novel fingerprinting techniques that can accurately identify

a browser even down to its minor version. These techniques

involve the ordering of methods and properties, detection

of vendor-specific methods, HTML/CSS functionality as

well as minor but fingerprintable implementation choices.

Lastly, we examine and test browser extensions that are

available for users who wish to spoof the identity of their

browser and show that, unfortunately all fail to completely

hide the browser’s true identity. This incomplete coverage

not only voids the extensions but, ironically, also allows

fingerprinting companies to detect the fact that user is

attempting to hide, adding extra fingerprintable information.

Our main contributions are:

• We shed light into the current practices of device iden-

tification through web-based fingerprinting and propose

a taxonomy of fingerprintable information.

• We measure the adoption of fingerprinting on the web.

• We introduce novel browser-fingerprinting techniques

that can, in milliseconds, uncover a browser’s family

and version.

• We demonstrate how over 800,000 users, who are

currently utilizing user-agent-spoofing extensions, are

more fingerprintable than users who do not attempt to

hide their browser’s identity, and challenge the advice

given by prior research on the use of such extensions

as a way of increasing one’s privacy [18].

II. COMMERCIAL FINGERPRINTING

While Eckersley showed the principle possibility of fin-

gerprinting a user’s browser in order to track users without

the need of client-side stateful identifiers [12], we wanted

to investigate popular, real-world implementations of finger-

printing and explore their workings. To this end, we ana-

lyzed the fingerprinting libraries of three large, commercial

companies: BlueCava1, Iovation2 and ThreatMetrix3. Two of

these companies were chosen due to them being mentioned

in the web-tracking survey of Mayer and Mitchell [19],

while the third one was chosen due to its high ranking on a

popular search engine. Given the commercial nature of the

companies, in order to analyze the fingerprinting scripts we

first needed to discover websites that make use of them. We

used Ghostery [9], a browser-extension which lists known

third-party tracking libraries on websites, to obtain the list

of domains which the three code providers use to serve their

fingerprinting scripts. Subsequently, we crawled popular

Internet websites, in search for code inclusions, originating

from these fingerprinting-owned domains. Once these web

sites were discovered, we isolated the fingerprinting code,

extracted all individual features, and grouped similar features

of each company together.

In this section, we present the results of our analysis,

in the form of a taxonomy of possible features that can

be acquired through a fingerprinting library. This taxonomy

covers all the features described in Panopticlick [12] as

well as the features used by the three studied fingerprinting

companies. Table I lists all our categories and discovered

features, together with the method used to acquire each

feature. The categories proposed in our taxonomy resulted

by viewing a user’s fingerprintable surface as belonging

to a layered system, where the “application layer” is the

browser and any fingerprintable in-browser information. At

the top of this taxonomy, scripts seek to fingerprint and

identify any browser customizations that the user has directly

or indirectly performed. In lower levels, the scripts target

user-specific information around the browser, the operating

system and even the hardware and network of a user’s

1http://www.bluecava.com
2http://www.iovation.com
3http://www.threatmetrix.com
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Fingerprinting Category Panopticlick BlueCava
Iovation

ReputationManager ThreatMetrix
Browser customizations Plugin enumeration(JS) Plugin enumeration(JS) Plugin enumeration(JS)

Mime-type enumeration(JS) ActiveX + 53 CLSIDs(JS) Mime-type enumeration(JS)
ActiveX + 8 CLSIDs(JS) Google Gears Detection(JS) ActiveX + 6 CLSIDs(JS)

Flash Manufacturer(FLASH)
Browser-level user configurations Cookies enabled(HTTP) System/Browser/User Language(JS) Browser Language(HTTP, JS) Browser Language(FLASH)

Timezone(JS) Timezone(JS) Timezone(JS) Timezone(JS, FLASH)
Flash enabled(JS) Flash enabled(JS) Flash enabled(JS) Flash enabled(JS)

Do-Not-Track User Choice(JS) Date & time(JS) Proxy Detection(FLASH)
MSIE Security Policy(JS) Proxy Detection(FLASH)

Browser family & version User-agent(HTTP) User-agent(JS) User-agent(HTTP, JS) User-agent(JS)
ACCEPT-Header(HTTP) Math constants(JS)
Partial S.Cookie test(JS) AJAX Implementation(JS)

Operating System & Applications User-agent(HTTP) User-agent(JS) User-agent(HTTP, JS) User-agent(JS)
Font Detection(FLASH, JAVA) Font Detection(JS, FLASH) Windows Registry(SFP) Font Detection(FLASH)

Windows Registry(SFP) MSIE Product key(SFP) OS+Kernel version(FLASH)
Hardware & Network Screen Resolution(JS) Screen Resolution(JS) Screen Resolution(JS) Screen Resolution(JS, FLASH)

Driver Enumeration(SFP) Device Identifiers(SFP)
IP Address(HTTP) TCP/IP Parameters(SFP)
TCP/IP Parameters(SFP)

Table I
TAXONOMY OF ALL FEATURES USED BY PANOPTICLICK AND THE STUDIED FINGERPRINTING PROVIDERS - SHADED FEATURES ARE, IN COMPARISON

TO PANOPTICLICK, EITHER SUFFICIENTLY EXTENDED, OR ACQUIRED THROUGH A DIFFERENT METHOD, OR ENTIRELY NEW

machine. In the rest of this section, we focus on all the

non-trivial techniques used by the studied fingerprinting

providers that were not previously described in Eckersley’s

Panopticlick [12].

A. Fingerprinting through popular plugins

As one can see in Table I, all companies use Flash, in

addition to JavaScript, to fingerprint a user’s environment.

Adobe Flash is a proprietary browser plug-in that has

enjoyed wide adoption among users, since it provided ways

of delivering rich media content that could not traditionally

be displayed using HTML. Despite the fact that Flash has

been criticized for poor performance, lack of stability, and

that newer technologies, like HTML5, can potentially deliver

what used to be possible only through Flash, it is still

available on the vast majority of desktops.

We were surprised to discover that although Flash reim-

plements certain APIs existing in the browser and accessible

through JavaScript, its APIs do not always provide the

same results compared to the browser-equivalent functions.

For instance, for a Linux user running Firefox on a 64-bit

machine, when querying a browser about the platform of

execution, Firefox reports “Linux x86 64”. Flash, on the

other hand, provides the full kernel version, e.g., Linux

3.2.0-26-generic. This additional information is not only un-

desirable from a privacy perspective, but also from a security

perspective, since a malicious web-server could launch an

attack tailored not only to a browser and architecture but to

a specific kernel. Another API call that behaves differently

is the one that reports the user’s screen resolution. In the

Linux implementations of the Flash plugin (both Adobe’s

and Google’s), when a user utilizes a dual-monitor setup,

Flash reports as the width of a screen the sum of the two

individual screens. This value, when combined with the

browser’s response (which lists the resolution of the monitor

were the browser-window is located), allows a fingerprinting

service to detect the presence of multiple-monitor setups.

Somewhat surprisingly, none of the three studied finger-

printing companies utilized Java. One of them had some

dead code that revealed that in the past it probably did make

use of Java, however, the function was not called anymore

and the applet was no longer present on the hard-coded

location listed in the script. This is an interesting deviation

from Panopticlick, which did use Java as an alternate way

of obtaining system fonts. We consider it likely that the

companies abandoned Java due to its low market penetration

in browsers. This, in turn, is most likely caused by the fact

that many have advised the removal of the Java plugin from

a user’s browser [20], [21] due to the plethora of serious

Java vulnerabilities that were discovered and exploited over

the last few years.

B. Vendor-specific fingerprinting

Another significant difference between the code we

analyzed and Panopticlick is that, the fingerprinting

companies were not trying to operate in the

same way across all browsers. For instance, when

recognizing a browser as Internet Explorer, they

would extensively fingerprint Internet-Explorer-specific

properties, such as navigator.securityPolicy and

navigator.systemLanguage. At the same time,

the code accounted for the browser’s “short-comings,”

such as using a lengthy list of predefined CLSIDs for

Browser-Helper-Objects (BHOs) due to Internet Explorer’s

unwillingness to enumerate its plugins.
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Listing 1 Side-channel inference of the presence or absence

of a font

function get_text_dimensions(font){

h = document.getElementsByTagName("BODY")[0];
d = document.createElement("DIV");
s = document.createElement("SPAN");

d.appendChild(s);
d.style.fontFamily = font;
s.style.fontFamily = font;
s.style.fontSize = "72px";
s.innerHTML = "font_detection";
h.appendChild(d);

textWidth = s.offsetWidth;
textHeight = s.offsetHeight;
h.removeChild(d);

return [textWidth, textHeight];
}

C. Detection of fonts

The system’s list of fonts can serve as part of a user’s

unique fingerprint [12]. While a browser does not directly

provide that list, one can acquire it using either a browser

plugin that willingly provides this information or using a

side-channel that indirectly reveals the presence or absence

of any given font.
1) Plugin-based detection: ActionScript, the scripting

language of Flash, provides APIs that include methods for

discovering the list of fonts installed on a running system.

While this traditionally was meant to be used as a way

of ensuring the correct appearance of text by the plugin,

it can also be used to fingerprint the system. Two out of the

three studied companies were utilizing Flash as a way of

discovering which fonts were installed on a user’s computer.

Interestingly, only one of the companies was preserving the

order of the font-list, which points, most likely, to the fact

that the other is unaware that the order of fonts is stable

and machine-specific (and can thus be used as an extra

fingerprinting feature).

2) Side-channel inference: The JavaScript code of one

of the three fingerprinting companies included a fall-back

method for font-detection, in the cases where the Flash

plugin was unavailable. By analyzing that method, we dis-

covered that they were using a technique, similar to the CSS

history stealing technique [22], to identify the presence or

absence of any given font - see Listing 1.

More precisely, the code first creates a <div> element.

Inside this element, the code then creates a <span> el-

ement with a predetermined text string and size, using

a provided font family. Using the offsetWidth and

Font Family String Width x Height

Sans font_detection 519x84

Arial font_detection 452x83

Calibri font_detection 416x83

Figure 1. The same string, rendered with different fonts, and its effects on
the string’s width and height, as reported by the Google Chrome browser

offsetHeight methods of HTML elements, the script

discovers the layout width and height of the element. This

code is first called with a “sans” parameter, the font typically

used by browsers as a fall-back, when another requested font

is unavailable on a user’s system. Once the height and text

for “sans” are discovered, another script goes over a pre-

defined list of fonts, calling the get_text_dimensions
function for each one. For any given font, if the current

width or height values are different from the ones obtained

through the original “sans” measurement, this means that

the font does exist and was used to render the predefined

text. The text and its size are always kept constant, so that

if its width or height change, this change will only be due

to the different font. Figure 1 shows three renderings of the

same text, with the same font-size but different font faces in

Google Chrome. In order to capitalize as much as possible

on small differences between fonts, the font-size is always

large, so that even the smallest of details in each individual

letter will add up to measurable total difference in the text’s

height and width. If the height and width are identical to the

original measurement, this means that the requested font did

not exist on the current system and thus, the browser has

selected the sans fall-back font. All of the above process,

happens in an invisible iframe created and controlled by the

fingerprinting script and thus completely hidden from the

user.

Using this method, a fingerprinting script can rapidly

discover, even for a long list of fonts, those that are present

on the operating system. The downside of this approach is

that less popular fonts may not be detected, and that the

font-order is no longer a fingerprintable feature.

D. Detection of HTTP Proxies

One of the features that are the hardest to spoof for a client

is its IP address. Given the nature of the TCP protocol, a

host cannot pretend to be listening at an IP address from

which it cannot reliably send and receive packets. Thus,

to hide a user’s IP address, another networked machine (a

proxy) is typically employed that relays packets between the

user that wishes to remain hidden and a third-party. In the

context of browsers, the most common type of proxies are

HTTP proxies, through which users configure their browsers

to send all requests. In addition to manual configuration,

browser plugins are also available that allow for a more

controlled use of remote proxies, such as the automatic

routing of different requests to different proxies based on
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Figure 2. Fingerprinting libraries take advantage of Flash’s ability to ignore
browser-defined HTTP proxies to detect the real IP address of a user

pattern matching of each request4, or the cycling of proxies

from a proxy list at user-defined intervals5.

From the point of view of device identification through

fingerprinting, a specific IP address is an important feature.

Assuming the use of fingerprinting for the detection of

fraudulent activities, the distinction between a user who is

situated in a specific country and one that pretends to be

situated in that country, is crucial. Thus, it is in the interest

of the fingerprint provider to detect a user’s real IP address

or, at least, discover that the user is utilizing a proxy server.

When analyzing the ActionScript code embedded in the

SWF files of two of the three fingerprinting companies,

we found evidence that the code was circumventing the

user-set proxies at the level of the browser, i.e., the loaded

Flash application was contacting a remote host directly,

disregarding any browser-set HTTP proxies. We verified this

behavior by employing both an HTTP proxy and a packet-

capturing application, and noticing that certain requests

were captured by the latter but were never received by the

former. In the code of both of the fingerprinting companies,

certain long alphanumerical tokens were exchanged between

JavaScript and Flash and then used in their communication

to the server. While we do not have access to the server-

side code of the fingerprinting providers, we assume that

the identifiers are used to correlate two possibly different IP

addresses. In essence, as shown in Figure 2, if a JavaScript-

originating request contains the same token as a Flash-

originating request from a different source IP address, the

server can be certain that the user is utilizing an HTTP proxy.

Flash’s ability to circumvent HTTP proxies is a somewhat

known issue among privacy-conscious users that has lead to

the disabling of Flash in anonymity-providing applications,

like TorButton [23]. Our analysis shows that it is actively

exploited to identify and bypass web proxies.

4FoxyProxy - http://getfoxyproxy.org/
5ProxySwitcher - http://www.proxyswitcher.com/

E. System-fingerprinting plugins

Previous research on fingerprinting a user’s browser fo-

cused on the use of popular browser plugins, such as Flash

and Java, and utilized as much of their API surface as

possible to obtain user-specific data [11], [12]. However,

while analyzing the plugin-detection code of the studied

fingerprinting providers, we noticed that two out of the

three were searching a user’s browser for the presence of

a special plugin, which, if detected, would be loaded and

then invoked. We were able to identify that the plugins

were essentially native fingerprinting libraries, which are

distributed as CAB files for Internet Explorer and eventually

load as DLLs inside the browser. These plugins can reach

a user’s system, either by a user accepting their installation

through an ActiveX dialogue, or bundled with applications

that users download on their machines. DLLs are triggered

by JavaScript through ActiveX, but they run natively on the

user’s machine, and thus can gather as much information as

the Internet Explorer process.

We downloaded both plugins, wrapped each DLL into an

executable that simply hands-off control to the main routine

in the DLL and submitted both executables to Anubis [24], a

dynamic malware analysis platform that executes submitted

binaries in a controlled environment. We focused on the

Windows registry values that were read by the plugin, since

the registry is a rich environment for fingerprinting. The

submitted fingerprinting DLLs were reading a plethora of

system-specific values, such as the hard disk’s identifier,

TCP/IP parameters, the computer’s name, Internet Explorer’s

product identifier, the installation date of Windows, the

Windows Digital Product Id and the installed system drivers

– entries marked with SFP in Table I.

All of these values combined provide a much stronger

fingerprint than what JavaScript or Flash could ever con-

struct. It is also worthwhile mentioning that one of the two

plugins was misleadingly identifying itself as “Reputation-

Shield” when asking the user whether she wants to accept

its installation. Moreover, none of 44 antivirus engines of

VirusTotal [25] identified the two DLLs as malicious, even

though they clearly belong to the spyware category. Using

identifiers found within one DLL, we were also able to locate

a Patent Application for Iovation’s fingerprinting plugin that

provides further information on the fingerprinting process

and the gathered data [26].

F. Fingerprint Delivery Mechanism

In the fingerprinting experiments of Mayer [11] and

Eckersley [12], there was a 1-to-1 relationship between the

page conducting the fingerprinting and the backend storing

the results. For commercial fingerprinting, however, there is

a N-to-1 relationship, since each company provides finger-

printing services to many websites (through the inclusion of

third-party scripts) and needs to obtain user fingerprints from

each of these sites. Thus, the way that the fingerprint and
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the information about it are delivered is inherently different

from the two aforementioned experiments.

Through our code analysis, we found two different sce-

narios of fingerprinting. In the first scenario, the first-

party site was not involved in the fingerprinting process.

The fingerprinting code was delivered by an advertising

syndicator, and the resulting fingerprint was sent back to the

fingerprinting company. This was most likely done to combat

click-fraud, and it is unclear whether the first-party site is

even aware of the fact that its users are being fingerprinted.

In the second scenario, where the first-party website is

the one requesting the fingerprint, we saw that two out of

the three companies were adding the final fingerprint of the

user into the DOM of the hosting page. For instance, www.
imvu.com is using BlueCava for device fingerprinting

by including remote scripts hosted on BlueCava’s servers.

When BlueCava’s scripts combine all features into a single

fingerprint, the fingerprint is DES-encrypted (DES keys

generated on the fly and then encrypted with a public key),

concatenated with the encrypted keys and finally converted

to Base64 encoding. The resulting string is added into the

DOM of www.imvu.com; more precisely, as a new hidden

input element in IMVU’s login form. In this way, when the

user submits her username and password, the fingerprint is

also sent to IMVU’s web servers. Note, however, that IMVU

cannot decrypt the fingerprint and must thus submit it back

to BlueCava, which will then reply with a “trustworthiness”

score and other device information. This architecture allows

BlueCava to hide the implementation details from its clients

and to correlate user profiles across its entire client-base.

Iovation’s fingerprinting scripts operate in a similar manner.

Constrastingly, ThreatMetrix delivers information about

users in a different way. The including site, i.e., a customer

of ThreatMetrix, creates a session identifier that it places

into a <div> element with a predefined identifier. Threat-

Metrix’s scripts, upon loading, read this session identifier

and append it to all requests towards the ThreatMetrix

servers. This means that the including site never gets access

to a user’s fingerprint, but only information about the user

by querying ThreatMetrix for specific session identifiers.

G. Analysis Limitations

In the previous sections we analyzed the workings of the

fingerprinting libraries of three popular commercial compa-

nies. The analysis was a mostly manual, time-consuming

process, where each piece of code was gradually deobfus-

cated until the purpose of all functions was clear. Given the

time required to fully reverse-engineer each library, we had

to limit ourselves to analyze the script of each fingerprinting

company as it was seen through two different sites (that is,

two different clients of each company). However, we cannot

exclude the possibility of additional scripts that are present

on the companies’ web servers that would perform more

operations than the ones we encountered.

III. ADOPTION OF FINGERPRINTING

In Section II, we analyzed the workings of three com-

mercial fingerprinting companies and focused on the differ-

ences of their implementations when compared to Panop-

ticlick [12]. In this section, we study the fingerprinting

ecosystem, from the point of view of websites that leverage

fingerprinting.

A. Adoption on the popular web

To quantify the use of web-based fingerprinting on pop-

ular websites, we crawled up to 20 pages for each of the

Alexa top 10,000 sites, searching for script inclusions and

iframes originating from the domains that the three studied

companies utilize to serve their fingerprinting code. To cate-

gorize the discovered domains, we made use of the publicly-

available domain categorization service of TrendMicro 6, a

popular anti-virus vendor.

Through this process, we discovered 40 sites (0.4% of

the Alexa top 10,000) utilizing fingerprinting code from

the three commercial providers. The most popular site

making use of fingerprinting is skype.com, while the two

most popular categories of sites are: “Pornography” (15%)

and “Personals/Dating” (12.5%). For pornographic sites, a

reasonable explanation is that fingerprinting is used to detect

shared or stolen credentials of paying members, while for

dating sites to ensure that attackers do not create multiple

profiles for social-engineering purposes. Our findings show

that fingerprinting is already part of some of the most

popular sites of the Internet, and thus the hundreds of

thousands of their visitors are fingerprinted on a daily basis.

Note that the aforementioned adoption numbers are lower

bounds since our results do not include pages of the 10,000

sites that were not crawled, either because they were behind

a registration wall, or because they were not in the set of

20 URLs for each crawled website. Moreover, some popular

sites may be using their own fingerprinting algorithms for

performing device identification and not rely on the three

studied fingerprinting companies.

B. Adoption by other sites

To discover less popular sites making use of finger-

printing, we used a list of 3,804 domains of sites that,

when analyzed by Wepawet [27], requested the previously

identified fingerprinting scripts.

Each domain was submitted to TrendMicro’s and

McAfee’s categorization services 7 which provided as output

the domain’s category and “safety” score. We used two

categorizing services in an effort to reduce, as much as

possible, the number of “untested” results, i.e., the number of

websites not analyzed and not categorized. By examining the

results, we extracted as many popular categories as possible

6TrendMicro - http://global.sitesafety.trendmicro.com/
7McAfee -http://mcafee.com/threat-intelligence/domain/
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Figure 3. The top 10 categories of websites utilizing fingerprinting

and created aliases for names that were referring to the

same category, such as “News / Media” versus “General

News” and “Disease Vector” versus “Malicious Site”. If a

domain was characterized as “dangerous” by one, and “not

dangerous” by the other, we accepted the categorization

of the latter, so as to give the benefit of the doubt to

legitimate websites that could have been compromised, when

the former service categorized it.

Given the use of two domain-categorization services, a

small number of domains (7.9%) was assigned conflicting

categories, such as “Dating” versus “Adult/Mature” and

“Business/Economy” versus “Software/Hardware.” For these

domains, we accepted the characterization of McAfee, which

we observed to be more precise than TrendMicro’s for less

popular domains. Excluding 40.8% of domains which were

reported as “untested” by both services, the results of this

categorization are shown in Figure 3.

First, one can observe that eight out of the ten categories,

include sites which operate with user subscriptions, many of

which contain personal and possibly financial information.

These sites are usually interested in identifying fraudulent

activities and the hijacking of user accounts. The Adult/Ma-

ture category seems to make the most use of fingerprinting

as was the case with the Alexa top 10,000 sites.

The top two categories are also the ones that were the least

expected. 163 websites were identified as malicious, such as

using exploits for vulnerable browsers, conducting phishing

attacks or extracting private data from users, whereas 1,063

sites were categorized as “Spam” by the two categorizing

engines. By visiting some sites belonging to these categories,

we noticed that many of them are parked webpages, i.e., they

do not hold any content except advertising the availability

of the domain name, and thus do not currently include

fingerprinting code. We were however able to locate many

“quiz/survey” sites that are, at the time of this writing,

including fingerprinting code from one of the three studied

companies. Visitors of these sites are greeted with a “Con-

gratulations” message, which informs them that they have

won and asks them to proceed to receive their prize. At some

later step, these sites extract a user’s personal details and try

to subscribe the user to expensive mobile services.

While our data-set is inherently skewed towards “mali-

ciousness” due to its source, it is important to point out that

all of these sites were found to include, at some point in time,

fingerprinting code provided by the three studied providers.

This observation, coupled with the fact that for all three

companies, an interested client must set an appointment

with a sales representative in order to acquire fingerprinting

services, point to the possibility of fingerprinting companies

working together with sites of dubious nature, possibly

for the expansion of their fingerprint databases and the

acquisition of more user data.

IV. FINGERPRINTING THE BEHAVIOR OF SPECIAL

OBJECTS

In Section II, we studied how commercial companies per-

form their fingerprinting and created a taxonomy of finger-

printable information accessible through a user’s browser. In

Table I, one can notice that, while fingerprinting companies

go to great lengths to discover information about a browser’s

plugins and the machine hosting the browser, they mostly

rely on the browser to willingly reveal its true identity (as

revealed through the navigator.userAgent property

and the User-Agent HTTP header). A browser’s user-agent

is an important part of a system’s fingerprint [18], and thus

it may seem reasonable to assume that if users modify these

default values, they will increase their privacy by hiding

more effectively from these companies.

In this section, however, we demonstrate how fragile the

browser ecosystem is against fingerprinting. Fundamental

design choices and differences between browser types are

used in an effort to show how difficult it can be to limit

the exposure of a browser to fingerprinting. Even different

versions of the same browser can have differences in the

scripting environment that identify the browser’s real family,

version, and, occasionally, even the operating system. In

the rest of this section we describe several novel browser-

identifying techniques that: a) can complement current fin-

gerprinting, and b) are difficult to eliminate given the current

architecture of web browsers.

A. Experimental Fingerprinting Setup

Our novel fingerprinting techniques focus on the special,

browser-populated JavaScript objects; more precisely, the

navigator and screen objects. Contrary to objects

created and queried by a page’s JavaScript code, these ob-

jects contain vendor- and environment-specific methods and

properties, and are thus the best candidates for uncovering

vendor-specific behaviors.

To identify differences between browser-vendors and to

explore whether these differences are consistent among

installations of the same browser on multiple systems, we

constructed a fingerprinting script that performed a series of
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“everyday” operations on these two special objects (such

as adding a new property to an object, or modifying an

existing one) and reported the results to a server. In this

and the following section, we describe the operations of our

fingerprinting script and our results. Our constructed page

included a JavaScript program that performed the following

operations:

1) Enumerated the navigator and screen object,

i.e., request the listing of all properties of the afore-

mentioned objects.

2) Enumerated the navigator object again, to ensure

that the order of enumeration does not change.

3) Created a custom object, populated it, and enumerated

it. A custom, JavaScript-created object, allows us to

compare the behavior of browser-populated objects

(such as navigator) with the behavior of “classic”

JavaScript objects.

4) Attempted to delete a property of the navigator
object, the screen object, and the custom object.

5) Add the possibly-deleted properties back to their ob-

jects.

6) Attempted to modify an existing property of the

navigator and screen objects.

7) If Object.defineProperty is implemented in

the current browser, utilize it to make an existing

property in the navigator, screen, and custom

object non-enumerable.

8) Attempt to delete the navigator and screen
objects.

9) Attempt to assign new custom objects to the

navigator and screen variable names.

At each step, the objects involved were re-enumerated,

and the resulting data was Base64-encoded and sent to our

server for later processing. Thus, at the server side, we

could detect whether a property was deleted or modified, by

comparing the results of the original enumeration with the

current one. The enumeration of each object was conducted

through code that made use of the prop in obj construct, to

avoid forcing a specific order of enumeration of the objects,

allowing the engine to list object properties in the way of

its choosing.

B. Results

By sharing the link to our fingerprinting site with friends

and colleagues, we were able, within a week, to gather

data from 68 different browsers installations, of popular

browsers on all modern operating systems. While our data

is small in comparison to previous studies [11], [12], we

are not using it to draw conclusions that have statistical

relevance but rather, as explained in the following sections,

to find deviations between browsers and to establish the

consistency of these deviations. We were able to identify the

following novel ways of distinguishing between browsers:

Order of enumeration: Through the analysis of the

output from the first three steps of our fingerprinting

algorithm (Sec. IV-A), we discovered that the order of

property-enumeration of special browser objects, like the

navigator and screen objects, is consistently different

between browser families, versions of each browser, and,

in some cases, among deployments of the same version on

different operating systems. While in the rest of this section

we focus to the navigator object, the same principles

apply to the screen object.

Our analysis was conducted in the following manner.

After grouping the navigator objects and their enumer-

ated properties based on browser families, we located the

navigator object with the least number of properties.

This version was consistently belonging to the oldest version

of a browser, since newer versions add new properties

which correspond to new browser features, such as the

navigator.doNotTrack property in the newer versions

of Mozilla Firefox. The order of the properties of this

object, became our baseline to which we compared the

navigator objects of all subsequent versions of the same

browser family. To account for ordering changes due to the

introduction of new properties in the navigator object,

we simply excluded all properties that were not part of

our original baseline object, without however changing the

relative order of the rest of the properties. For instance,

assume an ordered set of features B, where B0 = {a, b,

c, d} and B1 = {a, b, e, c, d, f}. B1 has two new elements

in comparison with B0, namely e and f which, however,

can be removed from the set without disrupting the relative

order of the rest. For every browser version within the same

browser-family, we compared the navigator object to the

baseline, by first recording and removing new features and

then noting whether the order of the remaining features was

different from the order of the baseline.

The results of this procedure are summarized in Table II.

For each browser family, we compare the ordering of the

navigator object among up to five different versions.

The most current version is denoted as Vc. The first ob-

servation is that in almost 20 versions of browsers, no

two were ever sharing the same order of properties in the

navigator object. This feature by itself, is sufficient to

categorize a browser to its correct family, regardless of

any property-spoofing that the browser may be employing.

Second, all browsers except Chrome maintain the ordering

of navigator elements between versions. Even when new

properties were introduced, these do not alter the relative

order of all other properties. For instance, even though the

newest version of Mozilla Firefox (Vc) has 7 extra features

when compared to the oldest version (Vc-4), if we ignore

these features then the ordering is the same with the original

ordering (W).

Google Chrome was the only browser that did not exhibit

this behavior. By analyzing our dataset, we discovered that
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Browser Vc-4 Vc-3 Vc-2 Vc-1 Vc
Mozilla Firefox W W+1 W+4 W+5 W+7
Microsoft IE - - X X X+1
Opera Y Y+1 Y+1 Y+3 Y+5
Google Chrome Z Z Z′+1 Z′′+1 Z′′′+1

Table II
DIFFERENCES IN THE ORDER OF NAVIGATOR OBJECTS BETWEEN

VERSIONS OF THE SAME BROWSER

Chrome not only changed the order between subsequent

versions of the browser, but also between deployments of the

same browser on different operating systems. For instance,

Google Chrome v.20.0.1132.57 installed on Mac OSX has

a different order of elements than the same version installed

on a Linux operating system. In Table II, we compare the

order of properties of the navigator object when the

underlying OS is Windows XP. While this changing order

may initially appear to be less-problematic than the stable

order of other browsers, in reality, the different orderings can

be leveraged to detect a specific version of Google Chrome,

and, in addition, the operating system on which the browser

is running.

Overall, we discovered that the property ordering of

special objects, such as the navigator object, is consistent

among runs of the same browser and runs of the same

version of browsers on different operating systems. Con-

trastingly, the order of properties of a custom script-created

object (Step 3 in Section IV-A) was identical among all the

studied browsers even though, according to the ECMAScript

specification, objects are unordered collections of proper-

ties [28] and thus the exact ordering can be implementation-

specific. More precisely, the property ordering of the custom

objects was always the same with the order of property

creation.

In general, the browser-specific, distinct property ordering

of special objects can be directly used to create models of

browsers and, thus, unmask the real identity of a browser.

Our findings are in par with the “order-matters” observation

made by previous research: Mayer discovered that the list of

plugins as reported by browsers was ordered based on the

installation time of each individual plugin [11]. Eckersley

noticed that the list of fonts, as reported by Adobe Flash

and Sun’s Java VM, remained stable across visits of the

same user [12].

Unique features: During the first browser wars in

the mid-90s, browser vendors were constantly adding new

features to their products, with the hope that developers

would start using them. As a result, users would have to use a

specific browser, effectively creating a browser lock-in [29].

The features ranged from new HTML tags to embedded

scripting languages and third-party plugins. Signs of this

“browser battle” are still visible in the contents of the user-

Browser Unique methods & properties

Mozilla Firefox

screen.mozBrightness
screen.mozEnabled
navigator.mozSms

+ 10

Google Chrome
navigator.webkitStartActivity
navigator.getStorageUpdates

Opera
navigator.browserLanguage

navigator.getUserMedia

Microsoft IE

screen.logicalXDPI
screen.fontSmoothingEnabled

navigator.appMinorVersion
+11

Table III
UNIQUE METHODS AND PROPERTIES OF THE NAVIGATOR AND SCREEN

OBJECTS OF THE FOUR MAJOR BROWSER-FAMILIES

agent string of modern browsers [30].

Today, even though the HTML standard is governed by

the W3C committee and JavaScript by Ecma International,

browser vendors still add new features that do not be-

long to any specific standard. While these features can

be leveraged by web developers to provide users with a

richer experience, they can also be used to differentiate

a browser from another. Using the data gathered by our

fingerprinting script, we isolated features that were available

in only one family of browsers, but not in any other. These

unique features are summarized in Table III. All browser

families had at least two such features that were not shared

by any other browser. In many cases, the names of the

new features were starting with a vendor-specific prefix,

such as screen.mozBrightness for Mozilla Firefox

and navigator.msDoNotTrack for Microsoft Internet

Explorer. This is because browser-vendors are typically

allowed to use prefixes for features not belonging to a

standard or not yet standardized [31]. In the context of

fingerprinting, a script can query for the presence or absence

of these unique features (e.g., typeof screen.mozBrightness

!= “undefined”) to be certain of the identity of any given

browser.

An interesting sidenote is that these unique features

can be used to expose the real version of Mozilla Firefox

browser, even when the user is using the Torbutton

extension. Torbutton replaces the navigator and

screen objects with its own versions, spoofing the

values of certain properties, so as to protect the privacy of

the user [32]. We installed Torbutton on Mozilla Firefox

version 14 and, by enumerating the navigator object, we

observed that, among others, the Torbutton had replaced the

navigator.userAgent property with the equivalent

of Mozilla Firefox version 10, and it was claiming that

our platform was Windows instead of Linux. At the same

time, however, special Firefox-specific properties that

Mozilla introduced in versions 11 to 14 of Firefox (such as

navigator.mozBattery and navigator.mozSms)
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were still available in the navigator object. These

discrepancies, combined with other weaknesses found

in less thorough user-agent-spoofing extensions (see

Section V), can uncover not only that the user is trying to

hide, but also that she is using Torbutton to do so.

Mutability of special objects: In the two previous

sections, we discussed the ability to exploit the enumeration-

order and unique features of browsers for fingerprinting. In

this section, we investigate whether each browser treats the

navigator and screen objects like regular JavaScript

objects. More precisely, we investigate whether these objects

are mutable, i.e., whether a script can delete a specific

property from them, replace a property with a new one, or

delete the whole object. By comparing the outputs of steps

four to nine from our fingerprinting algorithm, we made the

following observations.

Among the four browser families, only Google Chrome

allows a script to delete a property from the navigator
object. In all other cases, while the “delete” call returns

successfully and no exceptions are thrown, the properties

remain present in the special object. When our script

attempted to modify the value of a property of navigator,

Google Chrome and Opera allowed it, while Mozilla Firefox

and Internet Explorer ignored the request. In the same way,

these two families were the only ones allowing a script

to reassign navigator and screen to new objects.

Interestingly, no browser allowed the script to simply

delete the navigator or screen object. Finally, Mozilla

Firefox behaved in a unique way when requested to make a

certain property of the navigator object non-enumerable.

Specifically, instead of just hiding the property, Firefox

behaved as if it had actually deleted it, i.e., it was no longer

accessible even when requested by name.

Evolution of functionality: Recently, we have seen

a tremendous innovation in Web technologies. The com-

petition is fierce in the browsers’ scene, and vendors are

trying hard to adopt new technologies and provide a better

platform for web applications. Based on that observation,

in this section, we examine if we can determine a browser’s

version based on the new functionality that it introduces. We

chose Google Chrome as our testing browser and created

a library in JavaScript that tests if specific functionality is

implemented by the browser. The features that we selected to

capture different functionality were inspired by web design

compatibility tests (where web developers verify if their web

application is compatible with a specific browser). In total,

we chose 187 features to test in 202 different versions of

Google Chrome, spanning from version 1.0.154.59 up to

22.0.1229.8, which we downloaded from oldapps.com and

which covered all 22 major versions of Chrome. We found

that not all of the 187 features were useful; only 109 actually

changed during Google Chrome’s evolution. These browser
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Figure 4. A comparison between how many distinguishable feature sets
and minor Google Chrome versions we have per Google Chrome’s major
versions.

versions covered not only releases from the stable channel

of Google Chrome, but also from Beta and Dev channels.

We refer to a major version as the first number of Google

Chrome’s versioning system, and to minor version as the

full number of the version. We used a virtual machine with

Windows XP to setup all browser versions, and used all

versions to visit our functionality-fingerprinting page.

In total, we found 71 sets of features that can be used to

identify a specific version of Google Chrome. Each feature

set could identify versions that range from a single Google

Chrome version up to 14 different versions. The 14 Chrome

versions that were sharing the same feature set were all part

of the 12.0.742.* releases. Among all 71 sets, there were

only four cases where the same feature set was identifying

more than a single major version of the browser. In all of

these cases, the features overlapped with the first Dev release

of the next major version, while subsequent releases from

that point on had different features implemented. In Figure 4,

we show how many minor versions of Chrome we examined

per major version and how many distinct feature sets we

found for each major version. The results show that we can

not only identify the major version, but in most cases, we

have several different feature sets on the same major version.

This makes the identification of the exact browser version

even more fine-grained.

In Figure 5, we show how one can distinguish all

Google Chrome’s major versions by checking for specific

features. Every pair of major versions is separated by a

feature that was introduced into the newer version and

did not exist in the previous one. Thus, if anyone wants

to distinguish between two consecutive versions, a check

of a single feature is sufficient to do so. Notice that our

results indicate that we can perform even more fine-grained

version detection than the major version of Google Chrome

(we had 71 distinct sets of enabled features compared to 22

versions of Chrome), but for simplicity we examined only
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Figure 5. Feature-based fingerprinting to distinguish between Google Chrome major versions

the major version feature changes in detail.

Miscellaneous: In this section, we list additional

browser-specific behaviors that were uncovered through our

experiment but that do not fall in the previous categories.

Our enumeration of object-properties indirectly uses

the method toString() for the examined objects. By

comparing the formatted output of some specific prop-

erties and methods, we noticed that different browsers

treated them in slightly different ways. For instance,

when calling toString() on the natively implemented

navigator.javaEnabled method, browsers simply

state that it is a “native function.” Although all the examined

browser families print “function javaEnabled() { [native

code] },” Firefox uses newline characters after the opening

curly-bracket and before the closing one. Interestingly, Inter-

net Explorer does not list the navigator.javaEnabled
when requested to enumerate the navigator object, but

still provides the “native function” print-out when asked

specifically about the javaEnabled method. In the same

spirit, when our scripts invoked the toString() method

on the navigator.plugins object, Google Chrome

reported “[object DOMPluginArray],” Internet Explorer re-

ported “[object],” while both Mozilla Firefox and Opera

reported “[object PluginArray].”

Lastly, while trying out our fingerprinting page with

various browsers, we discovered that Internet Explorer lacks

native support for Base64 encoding and decoding (atob and

btoa, respectively) which our script used to encode data

before sending them to the server.

C. Summary

Overall, one can see how various implementation choices,

either major ones, such as the traversal algorithms for

JavaScript objects and the development of new features, or

minor ones, such as the presence or absence of a newline

character, can reveal the true nature of a browser and its

JavaScript engine.

V. ANALYSIS OF USER-AGENT-SPOOFING EXTENSIONS

With the advent of browser add-ons, many developers

have created extensions that can increase the security of

users (e.g., extensions showing HTML forms with non-

secure destinations) or their privacy (e.g., blocking known

ads and web-tracking scripts).

Extension #Installations User Rating
Mozilla Firefox

UserAgent Switcher 604,349 4/5
UserAgent RG 23,245 4/5
UAControl 11,044 4/5
UserAgentUpdater 5,648 3/5
Masking Agent 2,262 4/5
User Agent Quick Switch 2,157 5/5
randomUserAgent 1,657 4/5
Override User Agent 1,138 3/5

Google Chrome
User-Agent Switcher for Chrome 123,133 4/5
User-Agent Switcher 21,108 3.5/5
Ultimate User Agent Switcher,
URL sniffer

28,623 4/5

Table IV
LIST OF USER-AGENT-SPOOFING BROWSER EXTENSIONS

In the context of this paper, we were interested in studying

the completeness and robustness of extensions that attempt

to hide the true nature of a browser from an inspecting

website. As shown in Table I, while the studied companies

do attempt to fingerprint a user’s browser customizations,

they currently focus only on browser-plugins and do not

attempt to discover any installed browser-extensions. Given

however the sustained popularity of browser-extensions [33],

we consider it likely that fingerprinting extensions will be

the logical next step. Note that, unlike browser plugins,

extensions are not enumerable through JavaScript and, thus,

can only be detected through their side-effects. For instance,

some sites currently detect the use of Adblock Plus [34]

by searching for the absence of specific iframes and DOM

elements that are normally created by advertising scripts.

Since a browser exposes its identity through the user-

agent field (available both as an HTTP header and as a

property of the JavaScript-accessible navigator object),

we focused on extensions that advertised themselves as

capable of spoofing a browser’s user agent. These extensions

usually serve two purposes. First, they allow users to surf to

websites that impose strict browser requirements onto their

visitors, without fulfilling these requirements. For instance,

some sites are developed and tested using one specific

browser and, due to the importance of the content loading

correctly, refuse to load on other browsers. Using a user-

agent-spoofing extension, a user can visit such a site, by

pretending to use one of the white-listed browsers.
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Google
Chrome

Mozilla
Firefox

MSIE Opera

navigator.product Gecko Gecko N/A N/A
navigator.appCodeName Mozilla Mozilla Mozilla Mozilla
navigator.appName Netscape Netscape Microsoft

Internet
Explorer

Opera

navigator.platform Linux
i686

Linux
x86 64

Win32 Linux

navigator.vendor Google
Inc.

(empty
string)

N/A N/A

Table V
STANDARD PROPERTIES OF THE NAVIGATOR OBJECT AND THEIR

VALUES ACROSS DIFFERENT BROWSER FAMILIES

Another reason for using these extensions is to protect

the privacy of a user. Eckeresly, while gathering data for

the Panopticlick project, discovered that there were users

whose browsers were reporting impossible configurations,

for instance, a device was pretending to be an iPhone, but

at the same time had Adobe Flash support. In that case, these

were users who were obviously trying to get a non-unique

browser fingerprint by Panopticlick. Since Eckersley’s study

showed the viability of using common browser features

as parts of a unique fingerprint, it is reasonable to expect

that legitimate users utilize such extensions to reduce the

trackability of their online activities, even if the extensions’

authors never anticipated such a use. Recently, Trusteer

discovered in an “underground” forum a spoofing-guide that

provided step-by-step instructions for cybercriminals who

wished to fool fraud-detection mechanisms that used device-

fingerprinting [35]. Among other advice, the reader was

instructed to download an extension that changes the User-

Agent of their browser to make their sessions appear as if

they were originating by different computers with different

browsers and operating systems.

Table IV shows the Mozilla Firefox and Google Chrome

extensions that we downloaded and tested, together with

their user base (measured in July 2012) and the rating

that their users had provided. The extensions were discov-

ered by visiting each market, searching for “user-agent”

and then downloading all the relevant extensions with a

sufficiently large user base and an above-average rating.

A high rating is important because it indicates the user’s

satisfaction in the extension fulfilling its purpose. Our testing

consisted of listing the navigator and screen objects

through JavaScript and inspecting the HTTP headers sent

with browser requests, while the extensions were actively

spoofing the identity of the browser. As in Section IV,

we chose to focus on these two objects since they are

the ones that are the most vendor-specific as well as the

most probed by the fingerprinting libraries. Through our

analysis, we discovered that, unfortunately, in all cases,

the extensions were inadequately hiding the real identity of

the browser, which could still be straightforwardly exposed

through JavaScript. Apart from being vulnerable to every

fingerprinting technique that we introduced in Section IV,

each extension had one or more of the following issues:

• Incomplete coverage of the navigator object. In

many cases, while an extension was modifying the

navigator.userAgent property, it would leave

intact other revealing properties of the navigator ob-

ject, such as appName, appVersion and vendor
- Table V. Moreover, the extensions usually left the

navigator.platform property intact, which al-

lowed for improbable scenarios, like a Microsoft In-

ternet Explorer browser running on Linux.

• Impossible configurations. None of the studied ex-

tensions attempted to alter the screen object. Thus,

users who were utilizing laptops or normal workstations

and pretended to be mobile devices, were reporting

impossible screen width and height (e.g., a reported

1920x1080 resolution for an iPhone).

• Mismatch between User-agent values. As discussed

earlier, the user-agent of any given browser is accessible

through the HTTP headers of a browser request and

through the userAgent property of the navigator
object. We found that some extensions would change

the HTTP headers of the browser, but not of the

navigator object. Two out of three Chrome exten-

sions were presenting this behavior.

We want to stress that these extensions are not malicious

in nature. They are legitimately-written software that unfor-

tunately did not account for all possible ways of discovering

the true identity of the browsers on which they are installed.

The downside here is that, not only fingerprinting libraries

can potentially detect the actual identity of a browser, thus,

undermining the goals of the extension, but also that they

can discover the discrepancies between the values reported

by the extensions and the values reported by the browser,

and then use these differences as extra features of their

fingerprints. The discrepancies of each specific extension

can be modeled and thus, as with Adblock Plus, used to

uncover the presence of specific extensions, through their

side-effects.

The presence of any user-agent-spoofing extension is a

discriminatory feature, under the assumption that the major-

ity of browsing users are not familiar enough with privacy

threats (with the possible exception of cookies) to install

such spoofing extensions. As a rough metric, consider that

the most popular extension for Mozilla Firefox is Adblock

Plus [34] that, at the time of this writing, is installed by

fifteen million users, 25 times more users than UserAgent

Switcher, the most popular extension in Table IV.

We characterize the extension-problem as an iatrogenic 8

one. The users who install these extensions in an effort

8iatrogenic - Of or relating to illness caused by medical examination or
treatment.
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to hide themselves in a crowd of popular browsers, install

software that actually makes them more visible and more

distinguishable from the rest of the users, who are using

their browsers without modifications. As a result, we advice

against the use of user-agent-spoofing extensions as a way

of increasing one’s privacy. Our findings come in direct

antithesis with the advice given by Yen et al. [18], who

suggest that user-agent-spoofing extensions can be used, as

a way of making tracking harder. Even though their study

focuses on common identifiers as reported by client-side

HTTP headers and the client’s IP address, a server capable

of viewing these can respond with JavaScript code that will

uncover the user-agent-spoofing extension, using any of the

aforementioned techniques.

VI. DISCUSSION

Given the intrusive nature of web-based device finger-

printing and the current inability of browser extensions to

actually enhance a user’s privacy, in this section, we first

discuss possible ways of reducing a user’s fingerprintable

surface and then briefly describe alternative uses of finger-

printing which may become more prevalent in the future.

A. Reducing the fingerprintable surface

Flash. As described in Section II, Adobe Flash was

utilized by all three fingerprinting libraries that we studied,

due to its rich API that allow SWF files to access information

not traditionally available through a browser’s API. In all

cases, the SWF file responsible for gathering information

from the host was hidden from the user, by either setting

the width and height of the <object> tag to zero, or

placed into an iframe of zero height and width. In other

words, there was no visible change on the web page that

included the fingerprinting SWF files. This observation can

be used as a first line of defense. All modern browsers

have extensions that disallow Flash and Silverlight to be

loaded until explicitly requested by the user (e.g., through

a click on the object itself). These hidden files cannot

be clicked on and thus, will never execute. While this is

a straightforward solution that would effectively stop the

Flash-part of the fingerprint of all three studied companies,

a circumvention of this countermeasure is possible. By

wrapping their fingerprinting code into an object of the first-

party site and making that object desirable or necessary for

the page’s functionality, the fingerprinting companies can

still execute their code. This, however, requires much more

integration between a first-party website and a third-party

fingerprinting company than the current model of “one-size-

fits-all” JavaScript and Flash.

In the long run, the best solution against fingerprinting

through Flash should come directly from Flash. In the past,

researchers discovered that Flash’s Local Shared Objects,

i.e., Flash’s equivalent of browser cookies, were not deleted

when a user exited her browser’s private mode or even when

she used the “Clear Private Data” option of her browser’s

UI [36]. As a result, in the latest version of Flash, LSOs

are not stored to disk but simply kept in memory when

the browser’s private mode is utilized [37]. Similarly, when

a browser enters private mode, Flash could provide less

system information, respect any browser-set HTTP proxies

and possibly report only a standard subset of a system’s

fonts, to protect a user’s environment from fingerprinting.

JavaScript. There are multiple vendors involved in the

development of JavaScript engines, and every major browser

is equipped with a different engine. To unify the behavior of

JavaScript under different browsers, all vendors would need

to agree not only on a single set of API calls to expose to

the web applications, but also to internal implementation

specifics. For example, hash table implementations may

affect the order of objects in the exposed data structures

of JavaScript, something that can be used to fingerprint

the engine’s type and version. Such a consensus is difficult

to achieve among all browser vendors, and we have seen

diversions in the exposed APIs of JavaScript even in the

names of functions that offer the same functionality, e.g.,

execScript and eval. Also, based on the fact that

the vendors battle for best performance of their JavaScript

engines, they might be reluctant to follow specific design

choices that might affect performance.

At the same time, however, browsers could agree to sac-

rifice performance when “private-mode” is enabled, where

there could be an attempt to expose a unified interface.

B. Alternative uses of fingerprinting

Although, in this paper, we have mostly focused on finger-

printing as a fraud-detection and web-tracking mechanism,

there is another aspect that requires attention. Drive-by

downloads and web attacks in general use fingerprinting

to understand if the browser that they are executing on is

vulnerable to one of the multiple available exploits. This

way, the attackers can decide, at the server-side, which

exploit to reveal to the client, exposing as little as they

can of their attack capabilities. There are three different

architectures to detect drive-by downloads: low-interaction

honeypots, high-interaction honeypots and honeyclients. In

all three cases, the browser is either a specially crafted one,

so that it can instrument the pages visited, or a browser

installation that was never used by a real user. Given the

precise, browser-revealing, fingerprinting techniques that we

described in this paper, it is possible to see in the future these

mechanisms being used by attackers to detect monitoring

environments and circumvent detection.

VII. RELATED WORK

To the best of our knowledge, this paper is the first that

attempts to study the problem of web-based fingerprinting

from the perspectives of all the players involved, i.e., from

the perspective of the fingerprinting providers and their
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fingerprinting methods, the sites utilizing fingerprinting, the

users who employ privacy-preserving extensions to combat

fingerprinting, and the browser’s internals and how they

relate to its identity.

Eckersley conducted the first large-scale study showing

that various properties of a user’s browser and plugins

can be combined to form a unique fingerprint [12]. More

precisely, Eckersley found that from about 500,000 users

who visited panopticlick.eff.org and had Flash or

Java enabled, 94.2% could be uniquely identified, i.e., there

was no other user whose environment produced the same fin-

gerprint. His study, and surprisingly accurate identification

results, prompted us to investigate commercial fingerprinting

companies and their approach. Yen et al. [18] performed

a fingerprinting study, similar to Eckersley’s, by analyzing

month-long logs of Bing and Hotmail. Interestingly, the

authors utilize a client’s IP address as part of their tracking

mechanism, which Eckersley explicitly avoids dismissing

it as “not sufficiently stable.” As a way of protecting

oneself, the authors advocated the use of user-agent-spoofing

extensions. As we discussed in Section V, this is actually

counter-productive since it allows for more fingerprinting

rather than less.

Mowery et al. [13] proposed the use of benchmark ex-

ecution time as a way of fingerprinting JavaScript imple-

mentations, under the assumption that specific versions of

JavaScript engines will perform in a consistent way. Each

browser executes a set of predefined JavaScript benchmarks,

and the completion-time of each benchmark forms a part

of the browser’s performance signature. While their method

correctly detects a browser-family (e.g., Chrome) 98.2% of

the time, it requires over three minutes to fully execute.

According to a study conducted by Alenty [38], the average

view-time of a web page is 33 seconds. This means that,

with high likelihood, the benchmarks will not be able to

completely execute and thus, a browser may be misclassi-

fied. Moreover, the reported detection rate of more specific

attributes, such as the browser-version, operating system and

architecture, is significantly less accurate.

Mowery and Shacham later proposed the use of rendering

text and WebGL scenes to a <canvas> element as another

way of fingerprinting browsers [39]. Different browsers will

display text and graphics in a different way, which, however

small, can be used to differentiate and track users between

page loads. While this method is significantly faster than

the execution of browser benchmarks, these technologies are

only available in the latest versions of modern browsers,

thus they cannot be used to track users with older versions.

Contrastingly, the fingerprinting techniques introduced in

Section IV can be used to differentiate browsers and their

versions for any past version.

Olejnik et al. [40] show that web history can also be

used as a way of fingerprinting without the need of addi-

tional client-side state. The authors make this observation

by analyzing a corpus of data from when the CSS-visited

history bug was still present in browsers. Today, however,

all modern browsers have corrected this issue and thus,

extraction of a user’s history is not as straightforward,

especially without user interaction [41]. Olejnik et al. claim

that large script providers, like Google, can use their near-

ubiquitous presence to extract a user’s history. While this

is true [42], most users have first-party relationships with

Google, meaning that they can be tracked accurately, without

the need of resorting to history-based fingerprinting.

VIII. CONCLUSION

In this paper, we first investigated the real-life implemen-

tations of fingerprinting libraries, as deployed by three pop-

ular commercial companies. We focused on their differences

when compared to Panopticlick and discovered increased use

of Flash, backup solutions for when Flash is absent, broad

use of Internet Explorer’s special features, and the existence

of intrusive system-fingerprinting plugins.

Second, we created our own fingerprinting script, us-

ing multiple novel features that mainly focused on the

differences between special objects, like the navigator
and screen, as implemented and handled by different

browsers. We identified that each browser deviated from

all the rest in a consistent and measurable way, allowing

scripts to almost instantaneously discover the true nature

of a browser, regardless of a browser’s attempts to hide

it. To this end, we also analyzed eleven popular user-agent

spoofing extensions and showed that, even without our newly

proposed fingerprinting techniques, all of them fall short of

properly hiding a browser’s identity.

The purpose of our research was to demonstrate that when

considering device identification through fingerprinting,

user-privacy is currently on the losing side. Given the

complexity of fully hiding the true nature of a browser,

we believe that this can be efficiently done only by the

browser vendors. Regardless of their complexity and

sophistication, browser-plugins and extensions will never

be able to control everything that a browser vendor can.

At the same time, it is currently unclear whether browser

vendors would desire to hide the nature of their browsers,

thus the discussion of web-based device fingerprinting, its

implications and possible countermeasures against it, must

start at a policy-making level in the same way that stateful

user-tracking is currently discussed.
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