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Abstract—Several techniques in computer security, including
generic protocols for secure computation and symbolic exe-
cution, depend on implementing algorithms in static circuits.
Despite substantial improvements in recent years, tools built
using these techniques remain too slow for most practical
uses. They require transforming arbitrary programs into either
Boolean logic circuits, constraint sets on Boolean variables, or
other equivalent representations, and the costs of using these
tools scale directly with the size of the input circuit. Hence,
techniques for more efficient circuit constructions have benefits
across these tools. We show efficient circuit constructions for
various simple but commonly used data structures including
stacks, queues, and associative maps. While current practice
requires effectively copying the entire structure for each oper-
ation, our techniques take advantage of locality and batching
to provide amortized costs that scale polylogarithmically in
the size of the structure. We demonstrate how many common
array usage patterns can be significantly improved with the
help of these circuit structures. We report on experiments
using our circuit structures for both generic secure computation
using garbled circuits and automated test input generation
using symbolic execution, and demonstrate order of magnitude
improvements for both applications.

I. INTRODUCTION

Generic secure computation protocols and symbolic exe-

cution both require arbitrary algorithms to be converted into

static circuits, and their efficiency depends critically on the

size of the circuit. Therefore, we can improve the speed of

these applications by finding efficient circuit constructions

for various common programming constructs.

We show efficient constructions for three common data

structures: stacks, queues and associative maps. Our con-

structions are general enough to be used in both the applica-

tions. Our stack and queue provide conditional update opera-

tions using only amortized Θ(logn) gates for each operation,

while associative map uses amortized Θ(log2 n) gates for

each access or update (where n is the maximum number

of elements in the structure). We then show how various

common array usage patterns can be rewritten using these

data structures, thus obtaining far more efficient circuits for

those cases (Section IV). Finally, we demonstrate that the

use of these circuits indeed leads to significant speedups in

practice (Section VI). We do this by manually replacing stan-

dard arrays with our circuit structures in various interesting

applications of secure computation and automatic test-input

generation (Section V).

In the next section, we present the motivation for our

work emphasizing the commonality of static circuits across

applications, followed by background on how programs

are typically converted into circuits. Section VII discusses

related work more broadly.

II. MOTIVATION

There has been a long history of work designing effi-

cient hardware implementations of Boolean circuits, starting

with Shannon’s work in the 1930s [51]. Hardware circuit

designers typically have to worry about circuit depth, gate

delay, and power consumption, but view reuse as a design

goal. Circuits used in several security applications are quite

different. In these applications, each wire in the circuit

holds a constant value during the entire execution. This is

essential for privacy for secure computation applications,

and necessary for test input generation where the goal is

to find inputs that lead to a particular output. We call such

static-value circuits, static circuits. For most applications,

including the ones we focus on here, the cost of evaluating

a static circuit follows directly from the number of gates in

the circuit.

Static circuit structures are radically different from typical

hardware circuits. A hardware circuit for adding a million

integers, for instance, can fetch them one-by-one from

memory, accumulating the sum using a single two-integer

adder circuit. Describing the same computation with a static

circuit requires a giant structure that includes a million

copies of the adder circuit. One particular problem that

stems from this difference is that random array access is

horrendously expensive in static circuits. Each access of

an n-element array requires a circuit of Θ(n) size where

the entire array is multiplexed for the required element by

the index being accessed (Figure 1). If the array access is

performed in a loop, the corresponding circuit blows up in

size extremely rapidly since static circuits cannot be reused.

Of course, there are simple cases where this is not a problem,

particularly when the access is at positions known in advance

i==0

a[0] x

a′[0]

i==1

a[1] x

a′[1]

i==2

a[2] x

a′[2]

i==3

a[3] x

a′[3]

a[i] := x

Figure 1. A single array access requiring n multiplexers.
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a[0] a[1] a[2] a[3] a[4]

�� �� �� �� ��for (i = 0; i < n; ++i)
    a[i]++;

Figure 2. In this case the index value becomes plain constants once the
loop is unrolled. Since the index does not depend on unknown inputs, array
access is much cheaper.

(e.g., Figure 2). It is often not the case, however, that all

access positions can be determined without knowing the

input data. We concentrate on making efficient circuits for

the cases in between these extremes: where we know that

the array is accessed in some simple pattern, but the indices

do depend to some degree on the input data. The overall

insight is that most programs do not access arrays in ways

that require the general linear multiplexer structure because

the actual array accesses are limited in predictable ways.

Here, we show how to amortize the cost of multiple accesses

when the application either makes multiple accesses that can

be performed in a batch, or has some locality in the indices

accessed.

In the following subsections, we describe our two tar-

get applications: generic secure computation protocols, and

automated test-input generation using SAT solvers. We

describe their typical use cases, their current state of the

art, and how these applications depend on static circuits.

Both applications require arbitrary programs to be expressed

as static circuits, so efficient circuit constructions yield

immediate efficiency gains for both applications.

A. Generic Protocols for Secure Computation

Secure computation allows two (or more) parties to

compute a function that depends on private inputs from

both parties without revealing anything about either party’s

private inputs to the other participant (other than what

can be inferred from the function output). While there

are many application-specific protocols for performing spe-

cific tasks securely [15, 42], recent advances in generic

protocols enable arbitrary algorithms to be performed as

secure computations. To execute any given program securely

under such a protocol, it is first converted into a Boolean

circuit representing the same computation. After this, the

generic protocols specify mechanical ways in which any

circuit can be converted into a protocol between parties to

perform the same computation securely. The fastest such

protocol currently known is Yao’s garbled circuits proto-

col [37, 54]. Recent implementations have demonstrated

its practicality for many interesting applications including

secure auctions [7, 33], fingerprint matching [30], financial

data aggregation [6], data-mining [45], approximate string

comparison, and privacy-preserving AES encryption [28].

The static circuits needed for these secure computation

protocols do not support fast random access to array ele-

ments. This is inherent, since the circuit must be constructed

before the index being accessed is known. Any arbitrary

array access requires a Θ(n)-sized multiplexer circuit in the

general case. While recent work by Dov Gordon et al. [23]

has improved the situation for large arrays by with a hybrid

protocol using oblivious RAM (ORAM), that approach still

has a very high overhead. On the other hand, our approach

can be orders of magnitude faster whenever it is applicable,

which covers many common cases. (Section VII provides a

more detailed discussion.)

Other generic secure computation protocols such as

fully homomorphic encryption [17, 53], GMW [21], and

NNOB [43] also use static circuit representations of the

computation. Therefore our circuit structures are useful in all

such protocols, although we only consider garbled circuits

in our evaluation.

B. Symbolic Execution on Programs

Another common application of static circuits is in sym-

bolic program execution. Several recent works use symbolic

execution to automatically derive properties about program

behavior [11, 32, 48]. Several tools are able to analyze

legacy programs without requiring any modification to their

source code [9, 10, 19].

The particular use of symbolic execution that we consider

is automatic test-input generation. The goal here is to

analyze a given program and automatically come up with

input cases that would drive the program execution along a

given path. By exploring all paths to find ones that end in

“bad” program states (e.g., a crash or buffer overflow), these

tools either obtain concrete test cases that expose program

bugs or provide assurance that no such bad paths exist (at

least within the explored space).

Test-input generation works by first converting the rele-

vant part of the program into a query for a constraint solver

(such as Z3 [12] or STP [16]). This solver is then used

to solve for the inputs that will drive program execution

to the desired state (or undesired state, as the case may

be). Rapid advances in heuristic solvers over the last decade

have made it possible to use these tools in many interesting

new applications. It turns out that these queries are also

equivalent to static circuits [52] in the sense that they also

define relationships between variables in a program. Thus, if

we can create optimized circuits for programs we also speed

up test-input generation, increasing the scale and depth of

programs that can be explored.

Since the literature in symbolic execution typically does

not refer to circuits, but instead talks solely in terms of

constraints, we clarify the relationship between them with

an example. Consider the code fragment:

x := 5+y; if (x > a) then x := x/a;
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The goal of the symbolic execution is to check if a

division by zero can arise for any particular values of

y and a. Normally, the code path to division would be

translated into the following constraints: x=5+y, x>a, a=0.

If all these constraints can be satisfied for some x, y, and

a, we have a possible bug. Solving the constraint is done

by feeding it into a SAT solver (as is often needed). The

addition and greater-than operations need to be defined using

primitive Boolean gates such as AND, OR, etc. much the

same way hardware logic gates are used to form addition and

comparison circuits. So, whenever we say that the “wires”

for p and q are fed into an AND gate to produce the output

wire r, what we really mean is that we are adding a new

constraint of the form r = p∧q. This in turn gets translated

into (p∨¬r) ∧ (q∨¬r) ∧ (¬p∨¬q∨ r) which is the input to the

SAT solver. Thus, our optimized circuit constructions will be

used to produce smaller constraint sets for encoding various

programming constructs.

Since arrays can rapidly drive up costs, SMT solvers

used in test-input generation tend to put a lot of effort

into handling them properly. Some approaches rely on

complicated under-approximation strategies that that use a

simplified, but less accurate, circuit for quickly discarding

obviously unreachable code paths. More accurate circuits

are then generated only for the remaining paths. In our

evaluation, we do not use any such approximations —

instead we generate completely faithful circuits and show

how they can be optimized in various cases. We hope

that this will enable faster generation of test-inputs by

allowing SMT solvers to use fewer, simpler approximation

circuits, thereby completing analysis using fewer invocations

of computationally expensive SAT solvers. We discuss this

further in Section IV-B.

An important characteristic of constraint solvers is that

they support cyclic circuits. In the end, their input is just a

set of logical constraints on a set of variables. Hence, it is

perfectly acceptable to have constraints such as a = b ∨ c and

c = a ∧ ¬d even though that may seem like circular definition

— it is just a set of constraints on the values of the variables

a, b, c and d. We will see later that this allows us to optimize

random array access in the general case, something we could

not do in the case of secure computation.

III. BACKGROUND

When programs are compiled into static circuits, conver-

sion for most simple statements and conditionals is fairly

intuitive. First, statements such as x := x + 5 are converted

into single assignment form x2 = x1 + 5, so that each variable

is assigned a value only once. This way, we can now allocate

separate wires in the circuit to represent the values of x

before (x1) and after (x2) the assignment.

Conditional branches are done by separately converting

each branch into a circuit. At the end of the branch, any

variable modified along either path is multiplexed at the end

according to the branch condition. For example,

if (a = 0) then x := x + 5

is converted to

x2 := x1 +5, x3 := mux(a = 0, x1, x2)

where mux(p, a, b) uses its first argument as control bits to

select between its second and third arguments.

Such multiplexers are actually never emitted by older

symbolic execution tools, since they only explore a program

one path at a time. However, this often led them to face the

exponential path explosion problem. Modern tools, there-

fore, often explore paths at the same time using techniques

such as path joining [24, 36] and compositional symbolic

execution [1], which require such multiplexers (the literature

also refers to them as if-then-else clauses).

Loops and Functions. Loops and functions pose particular

challenges for static circuits. Loops are completely unrolled

for some number of iterations, and functions are entirely

inlined (see Section VII for details). Since all values are

static, and we cannot reuse the same loop body circuit for

different iterations. Instead, we instantiate many copies of

the same circuit. In test-input generation, there are a wide

variety of heuristics for determining an unrolling threshold,

which can be as simple as always unrolling just once. In

such cases, checking tools simply do not explore paths that

require multiple loop iterations, ignoring bugs that depend

on such paths [3, 14]. Finding loop bounds is orthogonal to

our work, and we do not address it here. In our evaluation,

however, we use programs with known loop bounds, and

those loops are completely unrolled when converted to

circuits.

In secure computation, the practice is a little different. The

loop bounds are known based on the given input data size

even before the computation begins. An upper bound to input

data sizes is publicly revealed even though the data itself is

private. For this, they describe circuits in custom languages

[25, 39, 50] where inputs known at circuit generation time

are treated differently from inputs to the circuit wires itself.

Even if the computation is written in a traditional language

such as C [26], constraints are placed on what kinds of

variables can define loop bounds.

IV. CIRCUIT STRUCTURES

In this section we present circuit structures that provide

efficient constructions for stacks, queues and associative

maps. The stack and queue have quite similar structures, and

are therefore discussed together. In each case, we discuss the

operations we support, the circuit size required for each, and

when these more efficient constructions can be used in place

of general arrays.

A. Stack and Queue

We replace arrays with stacks and queues whenever we

can determine that the array index only changes in small
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if (x != 0) {
 a[i] += 3;
 if (a[i] > 10) i++;
 a[i] = 5;
}

t = stk.top();
t += 3;
                                  (x != 0, t);

                                  (x != 0, 5);condModifyTopstk.

condModifyTopstk.
condPushstk. (x != 0 && t > 10, NULL);

Figure 3. Using stacks instead of arrays when program changes i only in
small increments. We assumed that the stack top has already moved to the
position corresponding to a[i] using condPush during previous increments.

increments or decrements. In other words, we use them

to exploit locality whenever possible. Figure 3 shows an

example of code transformations required for this. The

operations needed to support the transformation are simply

conditional variants of standard stack and queue operations.

Each conditional operation takes an extra Boolean input that

either enables or disables the corresponding modification to

the stack. So, for example, stk.condPush (c,v) would push v

onto the stack if c is true. Otherwise, the stack passes through

unmodified.

Therefore, we now need to implement such operations

efficiently. The operations we support for stack are condPush,

condPop, condModifyTop, and readTop (no conditional read is

needed since it has no side effects). The queue operations

are identical, except that we use the word Front instead of

Top. Figure 4 shows a naive implementation of the condPush

operation, which still suffers from the expected Θ(n) cost per

operation. We first describe the efficient circuits for stacks;

then, we summarize the differences for queues.

In terms of array access patterns, we can use these two

structures to optimize any case where the index moves in

small increments or decrements. For example, if it is only

incremented (or only decremented) in a code fragment, we

use the pattern in Figure 3. If it moves in both directions, we

just need two stacks “head-to-head”, so that a pop from one

is matched by a push into the other. If we need multiple array

indices, we can use queues. For example, if i and j are both

scanning through the same array, the space between them

can be modeled as a queue, while the other segments of the

array can still be stacks. This can be generalized to multiple

index variables in the obvious way by using multiple queues

for parts between any two consecutive index variables.

Hierarchical Stack Implementation. The key idea is to

true

2 7 53

2 7 53

Figure 4. A naı̈ve circuit for condPush, using a series of multiplexers.
Since the condition is true, a new element is pushed. Had it been false,
the stack would passed through unmodified.

split up the stack buffer into several pieces and have empty

spaces in each of those, so that we do not have to slide

the entire buffer on each operation. This is illustrated in

Figure 5. This idea was inspired by the “circular shifts”

idea described in Pippenger and Fischer’s classic paper on

oblivious Turing machines [47]. However, our construction,

which we describe now, is significantly modified for our

purposes since we do not want to incur the overhead

of a general circuit simulating an entire Turing machine.

Section VII explains the differences between Pippenger and

Fischer’s construction and ours in more detail.

The buffers of the stack are now in chunks of increasing

size, starting with size 5, and then 10, 20, 40 etc. In general,

the buffer at level-i has 5× 2i data slots, where the levels

are numbered from the top starting at 0. The left side in

the figure at level-0 represents the top of the stack. We also

maintain the invariant that the number of data slots actually

used in the buffer at level-i is always a multiple of 2i. So,

for example, the level-1 buffer only accepts data in blocks

of two data items. To keep track of the next empty block

available, we also maintain a 3-bit counter at each level, t.

At any given state, the counter can have values in the range

0–5, and if the one at level-i reads p, then it means that

the next data block pushed in to this buffer should go to

position p. Finally, we maintain a single-bit “present” flag

associated with each data block to indicate whether or not it

is currently empty. We do not explicitly show this bit in our

figures, other than indicating it with the color of the data

block (gray indicates occupied).

Conditional Push Operations. For simplicity, let us start

with a “nice” state, where we assume that the counter at
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Figure 5. The stack buffers separated into levels, with five blocks each. A
level 0 shift circuit is generated after every two conditional push operations.
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Figure 6. Circuit for a single conditional push operation into level-0 buffer.

each level starts no higher than 3. The top row in Figure 5

depicts such a state. This means every level currently has

enough empty slots to accept at least two more blocks of

data. So, for the first two condPush operations, we know we

have an empty space at level-0 to store the new element

as needed if the input condition is true. This circuit will

simply be the naı̈ve array write operation. In addition, we

conditionally increment the counter t, to reflect the change

in position of the stack top. This circuit is a series of

5 multiplexers, each of which chooses between the new

incoming data being pushed on the stack and the old data

stored in the corresponding slot at level-0. The multiplexer

control lines are the outputs of a decoder driven by the

counter, so that only the appropriate data slot gets written

to, while the other items pass through with their values

unchanged. Finally, since we are implementing a conditional

push, the input condition feeds into the enable bit of the

decoder, and conditionally increments the counter at level 0.

The wires for the deeper levels (not shown in the figure) are

passed through unchanged to the output. This construction

is shown in Figure 6.

After two conditional push operations it is possible that

the level 0 buffer is now full, and we have to generate some

extra circuitry for passing blocks into the next level. For this,

we simply check the counter to see if it is greater than 3.

The result of this comparison is used to conditionally right-

shift the contents of the buffer by 2 slots, while the elements

ejected from the right are pushed into level 1 by a conditional

push circuit for the deeper level. At the same time, the

counter on buffer 0 is decremented by 2 if necessary. Of

course, if the counter is already less than or equal to 3 (e.g.,

if the previous two conditional push operations had false

conditions and did not actually do anything), the stack state

is not modified in any way and the circuit simply passes on

the current values (Figure 7). After all this is done, we can

now be sure that the level-0 buffer once again has at least two

empty slots for the next two push operations to succeed. The

circuit for conditional push into deeper levels is the same

as the one for level 0, except that the circuit that shifts to

level-i is only generated every 2i condPush operations.

Conditional Pop. The conditional pop circuit is designed

analogously to the conditional push. Normally, it reads from

� �
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Figure 7. Emptying out data blocks from level i to (i+1).

the level-0 buffer and then decrements t. After every 2i

conditional pop operations we add extra circuits to check

if the counter at level i is less than 2, and if so, pop 2i+1

items from the deeper level (that is, from level (i+1) to level

i). Whenever we pop from level i, we decrement the counter

at that level, and add 2 to the counter at level (i−1) (unless

i−1 < 0). That way, the topmost item on the stack is always

in the level-0 buffer. The read top and modify top operations,

therefore, just need to use the level-0 counter to determine

which of the five elements in the buffer is actually the top,

and requires a constant-sized circuit, such as a multiplexer.

In this case we do not even need to check all 5 data slots,

since some are always kept empty by construction (they are

used only in transient states just before a shift).

Since we want to support push and pop operations inter-

leaved arbitrarily, we have to make sure that e.g., a shift

from level 0 to level 1 after some conditional push still

leaves enough elements at level 0 for any subsequent pops,

so that they do not interfere with each other. We only shift

two blocks at a time, and only do this when t ≥ 4, so that

after a shift we still have at least two blocks left for any

pops that may follow. Similar logic also holds for shift after

pop, when we must leave enough empty spaces for push

operations, while populating this level for pops. This also

explains our choice of using 5 blocks on each level: in the

worst case we need 2 empty spaces for push, 2 filled blocks

for pop, and one extra space since the deeper levels only

take an even number of blocks.

Analysis. From this point we will use the term cost of

a circuit to mean the number of gates. This is the most

important metric for our target applications, and the depth

of the circuit is mostly unimportant.

For every two push operations of the stack, a level-1 push

circuit is generated only once. This will in turn cause a

level-2 push circuit on every four operations of the stack,

and so on. In general, for a finite-length stack known to

have at most n elements at any given time, k operations

access level i at most �k/2i� times. However, the operations
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Figure 8. Hierarchical queue construction.

at the deeper levels are also more expensive since they move

around larger data blocks — each circuit at level i has Θ(2i)
logic gates per operation. So when k is large, we generate

Θ(2i× k/2i) = Θ(k)-sized circuits at level i. And since we

have Θ(logn) levels, the total circuit size for k operations

is Θ(k logn). Thus, the amortized code for each conditional

stack operation is Θ(logn). If no upper-bound to the stack

length is known in advance (at circuit generation time), we

can simply assume that after k conditional push operations,

the length is at most k. Following similar reasoning, the

amortized cost of a conditional pop is also Θ(logn). Op-

erations condModifyTop and readTop only involve the level-0

buffer, and therefore have fixed costs.

Hierarchical Queue Implementation. The queue structure

is essentially equivalent to a push-only stack and a pop-

only stack, juxtaposed together (Figure 8). Each uses 3×2i

data slots at level i, exactly half the buffer we have that

level. The head and tail buffers individually are smaller

than in the case of stack (3× 2i instead of 5× 2i) since

we know it is either push-only or pop-only. Every level now

has two counters, one for head and the other for tail. Each

is represented by three bits, with values in the range 0–6,

representing the head and tail position of the queue in the

current buffer, respectively. If their values are h and t in

the buffer for level i, it represents the fact that buffer slots

2it,2it +1, . . . ,2ih−1 are currently occupied. The invariant

t ≤ h is always maintained. If t = h, it represents the

condition where the corresponding buffer is empty. In such

cases, we will always reset t and h to the value 3, so that

they both point to the middle of the buffer. Here, we are

using the convention that pop operations occur at the head,

while push operations occur at the tail.

Conditional push and pop operations still work at level-

0 as in the stack. After every 2i push operations, we check

level-i and shift two blocks to level-(i+1) if t < 2. Similarly,

after 2i pop operations, we resupply the head buffer with new

elements from the next level if h < 5. So far, this is exactly

the same scenario as in the stack. But we now need to add

some extra circuitry to transfer elements between the two

halves. In particular, when a level-i pop occurs, it is possible

that level-(i+1) is empty, or that it does not even exist (that

is, we have no wires representing that buffer). So we need to

add extra circuits to check for this case. When it occurs, the

next few pop operations will supply data straight out of the

level-i tail buffer (instead of popping from the empty buffer

at the deeper level). Similarly, after a level-i push, if the tail

buffer is getting full and the next level is empty, the circuit

also checks to see if the head buffer in the current level is

also empty. If so, it simply shifts data blocks from the tail

buffer directly to the head buffer in the same level, skipping

the next-level buffer. All these conditional data movements

add extra multiplexers, but increase the circuit-size only by

a constant factor. So, we can still provide conditional queue

push and pop operations at Θ(logn) cost. As we will see

later in our evaluation, the constant factors are still quite

small, and the total cost of our queue construction is only

slightly higher than that of our stack.

Finally, this design ensures that the queue head is always

found at the level-0 buffer. So, the read/modify operations

for the queue head can still be done at constant cost.

B. Associative Map

The circuits for associative maps are quite different since

in this case we cannot rely on any locality of access. Instead,

here we amortize the cost whenever we have multiple (read

or write) operations that can be performed in a “batch”.

The only constraint here is that none of the keys or values

used in batched operations may depend on the result of

another operation in the same batch since this would lead

to a cyclic circuit. Many applications do have batchable

sequences of array accesses, such as those that involve

counting or permuting of array elements (see Section VI

for examples). We start with the construction for performing

batch writes on an associative map, and then show how it

can be tweaked to perform other operations. Here, we define

an associative map in a circuit as simply a collection of

wires representing a set of key-value pairs where the keys all

have unique values. We support batched update and batched

lookup operations; inserting new values can be done simply

by performing updates on non-existent keys.

The circuit for performing a batch of update operations is

shown in Figure 9. The circuit takes in two sets of inputs:

the old key-value pairs and a sequence of write operations.

The write operations in the sequence are themselves also

represented as key-value pairs: the key to update and the

new value to be written. However, the sequence can have

duplicate keys, and the order of writes among those with

the same key matters. The output of the circuit is simply

the new key-value pairs for the map. The idea is inspired

by the set-intersection circuit used by Huang et al. [27].

We first perform a stable sort on all the key-value pairs,

which is then passed through a linear scan that marks for

removal all but the latest value for each key. Finally, another
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Figure 9. Circuit for batch-updating an associative key-value map.

sort operation is performed, but this time with a different

comparison function — this allows us to collect together

only the values not marked for removal.

The cost of this cicuit is just the cost of two sorting oper-

ations plus a simple linear scan in the middle. Empirically,

we found that it works best when the batch size is between

approximately n and 2.5n, where n is the number of key-

value pairs in the map. If the batch size gets larger, we can

split it up into smaller batches. If the batch is too small,

we can still use this method, but the amortized cost may be

higher in that case.

The sort operations each require Θ(n logn) comparisons,

and the linear scan requires Θ(n) operations. So, the circuit

size should be simply Θ(n logn)1, providing n operations

each with an amortized cost of Θ(logn). However, there is

a problem. We need an oblivious sorting algorithm, where

compare and swaps are hardcoded in the circuit. But, the

known efficient oblivious sorting algorithms [4, 22] are not

stable — they do not preserve the order of elements in

input that compare equal. So to make the sorting stable,

we need to pad each element with extra wires feeding them

with their sequence number in the input ordering, so that

even equal elements no longer compare equal during the

sort. The downside of this is that we added a Θ(logn)
cost to our comparison functions, increasing our amortized

cost to Θ(log2 n) per write operation. Obviously, this is not

necessary if, in our application, we know all the keys in

1As we note in Section V, more popular Θ(n log2 n) algorithms actually
perform faster for the small data sizes used in our evaluation

the write are unique. In that case the entire operation is

reduced to the simple union operation for associative maps

commonly found in many programming languages.

It is now easy to see how this technique can be used

to perform other operations. For example, if we wanted to

add to old values instead of overwriting them (e.g., if the

values are integers), we just need to replace the linear scan

in the middle. Even better, since addition is commutative

and associative, we do not need a stable sort, allowing us to

construct the complete circuit with just Θ(n logn) gates.

If we want to perform read operations, the input will be

the map key-value pairs and keys to be read. Assuming we

have k keys to be read, they are all padded with sequential

serial numbers 0, 1, . . . , k− 1, which will be used later in

the final sorting operation to order the output wires. But for

now, they are all sorted by just the keys as before. The next

step will now be filling in values for the requested keys, with

a very similar linear scan. Finally, a sorting step reorders the

values and presents them in the order in which they were

requested (by comparing the extra serial numbers initially

padded in), so that we know which output wire corresponds

to which requested key. All this requires Θ(n log2 n) logic

gates.

In the case of automatic test-input generation, one special

observation is that cyclic circuits are allowed in its constraint

sets (Section II-B). So we can actually have circuits where

some of the input keys or values depend on some of the

output wires of the circuit. This allows us to represent

arbitrary random array access such as where one write

depends on a previous read. In fact, it is quite easy to make

small tweaks in the structure described to make a single,

unified (but more expensive) circuit that accepts an arbitrary

mix of read and write commands to be applied in sequence.

Since each circuit can do n operations using just Θ(n log2 n)
gates, the amortized cost for each array access now becomes

just Θ(log2 n).

V. IMPLEMENTATION

Figure 10 depicts the system we use to implement and

evaluate our circuit structures. We start with a program,

which is then manually converted into the corresponding

circuit generator. For this step, we use a custom circuit

Source Program

Custom Circuit

Structure Library

Rewritten

Program

Garbled 

Circuits

SAT

Solver

Execute

Figure 10. System for testing circuit efficiency.
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if (x != 0) {
   a[i] += 3;
   if (a[i] > 10) i++;
   a[i] = 5;

}

t = stk.top();

t += 3;

stk.condModifyTop (x != 0, t);

stk.condPush (x != 0 && t > 10, NULL);

stk.condModifyTop (x != 0, 5);

top stk

add t (constInt 3)

netNot =<< equal x (constInt 0)

condModTop xnz t stk

netAnd xnz =<< greaterThan t (constInt 10)

condPush c2 (constInt 0) stk

condModTop xnz (constInt 5) stk

t ←

t ←

xnz ←

stk ←

c2 ←

stk ←

stk ←

...

Figure 11. Steps needed to convert code to circuit. First we simply replace
arrays with appropriate data structures whenever possible (Section IV).
Then everything is systematically replaced with library calls for generating
corresponding circuits e.g. ‘+’ becomes ‘add’. Our custom library auto-
matically handles everything internal to the data structure (e.g., condPush

automatically decides if it also needs to perform an internal shift etc.). Both
these steps are currently done manually (and often combined into a single
step).

component library written in Haskell that includes all our

data structures (Figure 11). This circuit generator is then

executed to produce either a description of a secure compu-

tation protocol or a SAT query for test-input generation. For

secure computation, we generate circuits in the intermediate

representation designed by Melicher et al. [40]. For test-

input generation, we generate standard DIMACS queries

that is accepted by nearly all SAT solvers. We used a

fast and popular off-the-shelf solver called Lingeling [5].

The following paragraphs describe various details of the

implementation that efficiently realize the designs presented

in the previous section. Our implementation and code for all

the data structures presented here is available for download

from http://mightbeevil.org/netlist/.

Multiplexing in Stacks and Queues. Since most of the

data movement in the stack and queue circuits is done by

generating multiplexers, they are the most expensive parts

of our circuit. Hence, we focused on reducing the number

of multiplexers needed.

Consider the conditional shift operations used to move

data blocks between consecutive buffer levels. Figure 12 (a)

shows what happens when a shift occurs after a pop. Observe

that the leftmost two data blocks do not change regardless

of whether shifting actually occurred or not. Thus, the input

wires can just pass through for these blocks without needing

any muxers. We take advantage of similar opportunities for

the right shift needed after push operations (Figure 12 (b)),

when the output is always a blank block.

This provides substantial benefits by itself, but also en-

ables further reductions that take advantage of knowing

blocks are blank at circuit generation time. Figure 13 shows
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Figure 12. Removing muxes for shifting by determining outputs when
generating circuits.

�

�

�

�

�

�

�

�

Figure 13. Reducing multiplexers to a single AND gate if one input is
known to be blank. If the “present” flag associated with a data block is 0,
then the value in the data wires is never used. So, if the blank option is
selected by the control bit c, we zero out just the present flag. Note that
simple constant propagation would have produced an AND gate for every
output wire.

how we can reduce a wide multiplexer into a simple 1-bit

AND gate if we know that one of the input data blocks is

empty. In secure computation, we have to be careful not to

do this if the wires immediately lead to the final output, since

this may reveal extra information. Inside our stack and queue

constructions, though, this is not a problem. Together, these

techniques produce about 28% improvement for the stack

circuits, while a more modest 12% for the queue.

Sorting for Associative Maps. Our associative maps require

keeping the elements in key-sorted order using a data-

oblivious sorting algorithm — one where the order of

comparison and exchange operations does not depend on

the actual values being sorted, since the circuits must be

static. Standard sorting algorithms (e.g., Quicksort) are not

data-oblivious since the comparisons they do depend on
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the data. Goodrich’s data-oblivious randomized Shellsort

algorithm [22] requires Θ(n logn) compare and exchange

operations. However, the classical algorithm of Batcher’s

odd-even mergesort [4] produces smaller circuits when we

have fewer than about 300,000 elements2 in the array, even

though the latter algorithm has Θ(n log2 n) complexity. All

the array sizes we use in our evaluation are small enough

for Batcher’s algorithm, which is the one we use.

We also take advantage of knowledge about which parts

of the input are already known to be sorted. For example,

if the associative map is being used as an array, the old

data elements (top-left of Figure 9) are already sorted by

their index. So, we only sort the command part, and then

merge the two sorted parts in a single merge operation.

This reduces the overall cost of the batch operation by

another 20%. Furthermore, during array operations the keys

associated with the old values are just sequential integers that

are known at compile time, so basic constant propagation

provides another small speedup.

VI. EVALUATION

Our evaluation is divided into three parts: first, we

compare the size of the our three circuit structures with

the ones used in practice for various data lengths; next,

we use them in garbled circuits and measure the protocol

execution time; finally, we show improvements in test-input

generation by automatically producing an input that exposes

a buffer overflow bug in an example function. For both

secure computation and test-input generation, we were able

to obtain at least an order of magnitude speedup for large

cases. All the timing measurements were made on a desktop

machine running Ubuntu 12.04 on an Intel i7 2600S CPU

at 2.8 GHz with 8 GB of memory.

A. Circuit Size Comparison

The graphs in Figure 14 show how the size of our stack

and queue circuits scale with increasing data sizes. We report

the total number of binary logic gates used.3 The baseline

structures that we compare against are implemented using

conventional circuits whose cost scales as Θ(n) for each

operation. We made simple optimizations to the baseline

implementation to provide a fair comparison. For example,

for the first few operations of a stack, we know that the top of

a stack can lie within a small range of indices, and therefore

require smaller multiplexers. The stack and queue circuits

2The threshold apparently rises to 1.2 million elements when performing
secure computation in the fully malicious model, since using randomized
Shellsort then requires an extra shuffle network. Thanks to abhi shelat for
pointing this out.

3The literature in secure computation often excludes XOR gates in
circuit sizes since many protocols, including garbled circuits [34], can
be implemented in ways that enable XOR to be computed without any
cryptographic operations or communication. While we do not show separate
graphs plotting only non-XOR binary gates, we note that they show very
similar trends — the y-axes simply gets scaled across the board by a factor
of approximately one-third.

Figure 14. The x-axis shows the maximum capacity of each data structure
in number of 16-bit elements. The y-axis is the number of gates.

Figure 15. Per-element cost of performing n read operations on an array of
n elements. Baseline uses a simple multiplexer, while the “batched” circuit
uses an associative map. All maps are integer-to-integer maps, values being
16-bit integers and keys (log2 n)-bit integers.

were generated using random push and pop operations.

As expected, the stack and the queue structures have very

similar characteristics, and we reduced circuit size by over

11 times for 512 elements. Thus, when converting programs

to circuits, these structures can easily replace arrays even

for small sizes whenever the access pattern permits.

Figure 15 shows the benefits of our associative map

construction. The baseline in the figure shows the cost of

a normal read access by using a multiplexer. We compare

that against the size of a batch read circuit on an integer-

to-integer associative map. Our structures are worse than

the baseline implementation for small sizes, but become

beneficial for modest sizes. For 1000-element arrays, our

associative map design reduces the circuit size by 3.2x.

We performed similar experiments for write operations and

integer add operations. The trends are quite similar, although

batched integer add has much smaller circuits since stable

sorting is not required (Section IV-B).
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Input: A[i] 1st share of i-th data item

Input: B[i] 2nd share of i-th data item

Output: H[d], frequency of d in data set

1: H ← /0

2: for i← 1,n do

3: H[A[i]+B[i]]← 1+H[A[i]+B[i]]

Figure 16. A simple aggregation of data from secret shares for computing
histograms. Output is a simple frequency distribution of the component-
wise sums. All elements are 16-bit integers, with sums being modulo-216.

B. Secure Computation Using Garbled Circuits

Here we demonstrate how much speedup our circuit struc-

tures can provide in a garbled circuits protocol execution.

For this, we use two simple example programs that we

executed in garbled circuits: a simple statistical aggregation

program, and a data clustering algorithm.

1) Histogram of Sums: Consider a scenario where com-

panies want to aggregate financial data and generate a report

that provides a broad picture of the economy that all the

companies can use to make better decisions. However, such

data is obviously considered sensitive, and nobody wants to

reveal their data to a consortium member who might be from

a rival company. This is an example where secure multi-

party computation was actually used in practice, as described

by Bogdanov et al. [6]. Instead of directly sending their data,

they send out cryptographic shares of the data to multiple

servers which are then aggregated securely to form a report.

We consider one simple example of such an analysis:

histogram generation. Suppose the numbers in the actual

data have each been divided into two additive shares A and

B, such that the ith data element is simply the sum A[i]+B[i].
All we want to do now is compute the frequency of each

data element inside a secure computation protocol so that

no party learns the actual unaggregated data. The code is

shown in Figure 16.

To execute this algorithm as a garbled circuits protocol,

the code first needs to be converted into a circuit. In our

case, both the arrays are of equal length n. Once the loop

is unrolled n times to be converted into a circuit, it is easy

to see that i values will all become constants that do not

depend on input data. So the only array access that will be

slow is the one on line 3 — the sums are not known ahead of

time and depend on input values. Since we are performing

addition on the elements of H, we can take advantage of our

batch element addition circuit here. The speedup we achieve

just by making this one single change is shown in Figure 17.

For the largest test cases we tried (with n= 512), we reduced

runtime from 1 minute 18 seconds to just under 7 seconds

— a 6.7x speedup.

2) DBSCAN Clustering: Clustering algorithms are often

used to uncover new patterns in a given database. For

instance, insurance companies could perform clustering to

find out how many demographic categories they have in their

Figure 17. Execution time for the histogram-of-sums protocol for financial
data aggregation. All inputs are 16-bit numbers.

customer base in order to offer insurance plans accordingly.

While it is common for a single company to perform such

analyses on their own database, companies might sometimes

want a more complete picture by collaborating and running

a clustering analysis on their combined databases. Directly

sharing such data, however, may not be desirable with rivals,

or even possible because of their customer agreements.

Thus, it would be desirable to perform this over a secure

computation protocol. Here we will show how our stack

structure can help construct efficient circuits for a popular

such clustering algorithm, DBSCAN [13].

The input is simply an array of multi-dimensional data

points. Some of its elements come from one party, while

the rest from the other. The output is the number of clusters

found, and optionally, the cluster assignment of each data

point (where cluster[i] = j iff the ith data point was assigned

to cluster j). This assignment could then either be directly

revealed to the respective parties, or be used in further

computation (e.g. to calculate the size, centroid, or variance

of each cluster).

The DBSCAN algorithm, shown in Figure 18, is a density-

based clustering algorithm that runs a recursive search

through the input data set for regions of densely clustered

points. If any input point p in the input has at least minpts

points within a distance of radius, all these points are

assigned to the same cluster. The code shown here proceeds

in a depth-first search, and has execution time in Θ(n2).
Efficiently converting it into a circuit, however, poses a

number of challenges, which we discuss next.

The first problem we face concerns loop unrolling. Lexi-

cally, we see that the code has loops nested up to three levels

deep (labelled in the figure as (A), (B) and (C)). Therefore,

if we naı̈vely unroll it, the circuit automatically becomes

Θ(n3)-sized, even though we know only Θ(n2) iterations

will actually be executed. We know this because loop (B)

will be skipped if loop (A) is currently at a point that has

already been assigned a cluster (this check occurs at line

6). So, we know that the body of loop (B) is executed

502



Input: P: an array of data points

Input: minpts,radius

Output: cluster: cluster assignment for each point

Output: c: number of clusters

1: n← |P|
2: c← 0

3: s← emptyStack

4: cluster← [0,0, . . .]
5: for i← [1,n] do � (A)

6: if cluster[i] 	= 0 then

7: continue

8: V ← getNeighbors(i,P,minpts,radius)
9: if count(V )< minpts then

10: continue

11: c← c+1 � Start a new cluster

12: for j← [1,n] do

13: if V [ j] = true∧ cluster[ j] 	= 0 then

14: cluster[ j]← c

15: s.push( j)

16: while s 	= /0 do � (B)

17: k← s.pop()
18: V ← getNeighbors(k,P,minpts,radius)
19: if count(V )< minpts then

20: continue

21: for j← [1,n] do � (C)

22: if V [ j] = true∧ cluster[ j] 	= 0 then

23: cluster[ j]← c

24: s.push( j)

Figure 18. DBSCAN implementation.

while c1 do

{loopBody1}
while c2 do

{loopBody2}

�
�
�

selector← outerLoop

while selector 	= outerLoop∨ c1 do

if selector = outerLoop then

{loopBody1}

if c2 then

selector← innerLoop

{loopBody2}
else

selector← outerLoop

Figure 19. Flattening two nested loops into one. This produces smaller
unrolled circuits if a strong bound can be obtained for the total number of
iterations of the inner loop.

Figure 20. Execution time for DBSCAN clustering protocol over garbled
circuits. Data size is in number of data points, where each data point is
simply an (x,y) pair of two 16-bit integers, and the distance metric used is
Manhattan distance.

at most only n times total, even though it is nested inside

another loop. To avoid generating n2 copies of this loop in

the unrolled circuit, we simply flatten the loops (A) and (B)

as shown in Figure 19. This allows us to unroll the flattened

version just 2n times. The other loops (e.g., loop (C) or the

one at line 12) were not flattened, since we do not have

such strong lower bounds on how often they are skipped.

Generally, such flattening tends to help only if the number

of iterations taken by the inner loop can be substantially

different for each iteration of the outer loop, depending on

the private inputs.

However, this comes at a small additional cost: the value

of the variable i can no longer be determined at the time of

circuit generation. So, the array accesses at line 6 and line 8

will now be expensive, requiring full multiplexers. This does

not occur at the innermost loop levels, and the asymptotic

complexity is therefore unaffected. Most other array accesses

in the program involve indices known at the time of circuit

generation, and are therefore trivially implemented (e.g.,

unrolled version of loop (C) will have constant values for j

in each copy of the loop body).

The only remaining trouble will be the stack push op-

eration inside loop (C). Without the use of our stack con-

struction, there is no simple way of avoiding yet another

Θ(n) complexity factor here. Simply substituting a naive

construction of the stack with our data structure reduces

the complexity of the generated circuit from Θ(n3) to

Θ(n2 logn). The effect of this one simple change is shown

in Figure 20. All other optimizations are identical in the

compared versions to isolate the impact of just using our

stack circuit constructions. In the case of 480 data points,

the runtime drops from almost 10 hours to less than 1 hour.

C. Test Input Generation

To evaluate the impact of our structures on symbolic

execution, we use the merging procedure of the merge sort

503



1 #define MAXSIZE 100

int merge (int ∗arr1, int ∗arr2, int n, int ∗dest) {
int i , j , k;

if (n > MAXSIZE) return −1;

6 for ( i = 1; i < n; ++i)

if (arr1[ i−1] > arr1[i ]) return −1;

for ( j = 1; j < n; ++j)

if (arr2[ j−1] > arr2[j ]) return −1;

i = j = 0;

11 for (k = 0; k < 2 ∗ n; ++k) {
if (arr1[ i ] < arr2[ j ]) dest[k] = arr1[ i ++];

else dest[k] = arr2[ j ++];

}
return 0;

16 }

int main() {
int a[MAXSIZE], b[MAXSIZE], dest[2∗MAXSIZE];

int n;

21 fromInput (a, b, &n);

merge (a, b, n, dest);

}

Figure 21. A C program fragment for the merge procedure of merge sort.
It has a bug since it does not check if i or j are already out of bounds in
the last loop body.

Figure 22. Time taken to solve for an input that triggers a buffer overflow.
The scale for the y-axis is logarithmic. For the largest case, the speedup is
over 30x.

algorithm. A version of this code is shown in Figure 21.

However, the code shown has a bug: in the last loop, it

uses the array elements without first checking if the index is

already out of bounds. While the bug is quite simple, most

popular automated tools today have a hard time detecting

this bug. This is because of the well known path explosion

problem, where the number of possible paths that can be

taken through the code is exponential in MAXSIZE. We tried

using a state-of-the-art symbolic execution tool, KLEE [9],

on this example. However, it simply enumerates every single

one of these paths, creating a new constraint set for each of

them. As a result, it never actually generates a path that

exposes the bug.

Instead, we converted the entire computation into a circuit

(which is the same as fully joining all the paths together into

a large constraint, as described in Section III), and added

constraints to let a SAT solver find an input that exposes an

out-of-bounds access. We solve the same problem through

the SAT solver twice: in one run we change the array access

on lines 12 and 13 to use our stack structure, while in the

other case we leave it unchanged. The timing results are

shown in Figure 22. The circuit structures reduce the time

to find the bug from over 3 hours to just 6 minutes when

the array size is 200 elements.

In practice, programs often have buffer overflow errors

like these that are not triggered unless the data size is

large and has a particular pattern of values. However, most

complicated access patterns involving such large arrays are

considered impractical for symbolic execution systems in

use today. Our example here clearly shows the value in

thinking of the constraint sets in terms of static circuits,

and using that abstraction to create more optimized queries.

Although in our experiments we manually wrote a pro-

gram that generates queries for this particular function, we

expect that this process can be more automated in future. At

least for the common cases described in Section IV, it should

not be too hard for an automated tool to replace array uses

with the stack and queue structures that we describe here,

obtaining the same speedups we show here.

VII. RELATED WORK

While we include cyclic circuits in our notion of static

valued circuits, the special case of acyclic circuits have been

extensively studied in the past. Classical results from circuit

complexity provides bounds for the sizes of many interesting

families of functions. Examples of such families include

symmetric functions [31], monotonic functions [2], and

threshold functions [8]. Such functions tend to be too simple

or restrictive for our purposes. The result most relevant

to our work is Pippenger and Fischer’s classical paper on

oblivious Turing machines [47], where they show how any

Turing machine with sequential access to a tape can be

simulated in a combinatorial circuit of Θ(n logn) size where

n is the number of steps to simulate. While a sequential tape

can be immediately used as a stack, it is not obvious how to

extend their result to a FIFO queue, which is why we do not

use their circuit. Moreover, we optimize our designs to better

suit our application targets. For example, Pippenger and

Fischer’s design needs to support only one general operation

— simulating a single Turing machine time step. This is

far too general for our needs, and we generate much less

expensive specialized push and pop circuits.

Besides results for circuit complexity, the two application

targets that we focus on in this paper have seen rapid

improvements in speed in recent years. Below we summarize

some of the important ideas that made this possible, and how

they relate to our work.
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A. Secure Computation — Garbled Circuits

Much of the recent work enabling fast execution of

garbled circuits actually work at the level of the underlying

protocol, and does not necessarily change the circuit being

simulated. This includes the free XOR trick [34] that almost

eliminates the cost of executing XOR gates, garbled row re-

ductions that reduce communication overhead by 25% [46],

and pipelined execution that overlaps the various phases of

execution for scalability and reduced latency [28]. Since our

techniques do not depend on any of the specifics of the

underlying protocol, they can be used in combination with

all of these popular optimizations.

While traditionally most garbled circuit execution systems

were considered practical only against an honest-but-curious

adversary, execution of billion gate circuits against a fully

malicious adversary has also been demonstrated recently

by Kreuter et al. [35] by extensive use of parallelism.

They used the cut-and-choose technique outlined by Lindell

and Pinkas [38] to make their execution resistant against

malicious parties. Another, more efficient, technique for

fully secure execution of garbled circuits that have been

proposed recently by Huang et al. is based on dual execution

of the protocol [29, 41]. Since our optimization only impact

the circuits, they can be used with any of these flavors of

garbled circuit protocols.

Gordon et al. [23] recently demonstrated a hybrid secure

computation protocol involving garbled circuits and obliv-

ious RAM that provides general random access to arrays

in sublinear time. However, their protocol still has a very

high overhead due to the use of Oblivious RAM (ORAM)

structures. Our purely circuit-based solutions, on the other

hand, are much faster whenever they are applicable. In terms

of absolute performance, the fastest they reported was about

9.5 seconds per element access, and that for an array of 218

elements. Because of such high overheads, it was actually

still faster to naively multiplex over the entire array unless

the array is big (in their implementation, they break-even

at arrays of approximately 260,000 elements). Our circuit-

structures are orders of magnitude faster in the cases we can

handle, and as shown in Section VI we breakeven for much

smaller data sizes.

Finally, many of the recent frameworks and compilers

such as Fairplay [39] and CMBC-GC [26] provide ways

to produce garbled circuit protocols starting from high-

level programs. Although we have not focused on automatic

circuit compilation in this work, we hope that in future

such tools will be able to automatically detect which circuit

structure is applicable a given situation. This would allow

programmers to write code naturally using standard data

structures like arrays, but generate circuits that automatically

implement array accesses using appropriate less expensive

data structures to achieve reasonable performance.

B. Symbolic Execution

The development of symbolic execution as a tool for static

analysis has, in large part, been aided by the concurrent

improvements in constraint solvers. With modern constraint

solvers, symbolic execution systems such as KLEE [9] and

EXE [10] are able analyze a program and solve for inputs

that drive execution of the given program along a certain

path. We hope that our methods would make it easier for

such tools to handle far more complicated programs than

they are currently able to.

More recent advances in this field mostly focused on

improving scalability of these tools and on solving the

exponential path explosion problem. Path explosion is a

notorious problem where the number of paths to be explored

is exponential in the number of branches along that path.

Solutions recently proposed include compositional methods

and state merging. Compositional approaches (e.g., [1, 18,

20]) attempt to keep the paths shorter by analyzing one

function at a time and composing the results together later,

often lazily. In practice, however, state joining [24, 36]

seems to provide better results where several paths are

merged into one larger query the way we did here. Some

researchers have also noted how this method can be seen as

a strict generalization of the compositional methods [36].

Something we did not delve into in this paper is how

to determine loop bounds. Since current systems require

loops to be completely unrolled, tools need to establish a

reasonable upper bound for how many iterations of the loop

should be explored. There has been a lot of recent work in

this area, all of which complements our work on arrays.

For example, Obdržálek and Trtı́k [44] recently showed

how integer recurrence equations can sometimes be used

to solve for an upper bound. Saxena et al. demonstrated

how using input grammar specification can sometimes help

determine loop bounds [49]. Given how loops are often used

in conjunction with arrays, we believe our work will further

broaden the scope of their techniques to more complicated

coding patterns.

VIII. CONCLUSION

We showed how a common set of ideas can be used to

speed up common programming patterns in generic secure

computation and symbolic execution of programs, two pre-

viously unrelated applications. Both of these applications

depend on static circuits. We devised circuit structures that

lead to large speedups for several common data structures.

Further, we demonstrated how slow array access operations

in programs can often be replaced by more specialized data

structures like stack, queue, and associative map, achieving

asymptotic improvements in runtime. We are optimistic that

similar approaches can be taken with other data structures

to provide similar gains for a wide range of applications.

Although our work focused on manual implementation, we

believe such transformations could be automated in many
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cases, and our results point to future opportunities for

automatically generating efficient static circuits for secure

computation and symbolic execution.
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