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Abstract—TLS is possibly the most used protocol for secure
communications, with a 18-year history of flaws and fixes,
ranging from its protocol logic to its cryptographic design, and
from the Internet standard to its diverse implementations.

We develop a verified reference implementation of TLS 1.2.
Our code fully supports its wire formats, ciphersuites, sessions
and connections, re-handshakes and resumptions, alerts and
errors, and data fragmentation, as prescribed in the RFCs; it
interoperates with mainstream web browsers and servers. At the
same time, our code is carefully structured to enable its modular,
automated verification, from its main API down to computational
assumptions on its cryptographic algorithms.

Our implementation is written in F# and specified in F7. We
present security specifications for its main components, such as
authenticated stream encryption for the record layer and key
establishment for the handshake. We describe their verification
using the F7 typechecker. To this end, we equip each crypto-
graphic primitive and construction of TLS with a new typed
interface that captures its security properties, and we gradually
replace concrete implementations with ideal functionalities. We
finally typecheck the protocol state machine, and obtain precise
security theorems for TLS, as it is implemented and deployed.
We also revisit classic attacks and report a few new ones.

I. INTRODUCTION

Transport layer security (TLS) is possibly the most used

security protocol; it is widely deployed for securing web traffic

(HTTPS) and also mails, VPNs, and wireless communica-

tions. Reflecting its popularity, the security of TLS has been

thoroughly studied, with a well-documented, 18-year history

of attacks, fixes, upgrades, and proposed extensions [e.g.

28, 21–23, 53, 43]. Some attacks target the protocol logic,

for instance causing the client and server to negotiate the

use of weak algorithms even though they both support strong

cryptography [42]. Some exploit cryptographic design flaws,

for instance using knowledge of the next IV to set up adaptive

plaintext attacks [47]. Some, such as padding-oracle attacks,

use a combination of protocol logic and cryptography, taking

advantage of error messages to gain information on encrypted

data [56, 17, 57]. Others rely on various implementation

errors [14, 44, 38] or side channels [16]. Further attacks

arise from the usage or configuration of TLS, rather than the

protocol itself, for instance exploiting poor certificate manage-

ment or gaps between TLS and the application logic [52, 30].

Overall, the mainstream implementations of TLS still require

several security patches every year.

Meanwhile, TLS security has been formally verified in

many models, under various simplifying assumptions [51, 20,

32, 49, 48, 29, 36, 33]. While all these works give us better

confidence in the abstract design of TLS, and sometimes reveal

significant flaws, they still ignore most of the details of RFCs

and implementations.

To achieve provable security for TLS as it is used, we

develop a verified reference implementation of the Internet

standard. Our results precisely relate application security at

the TLS interface down to cryptographic assumptions on the

algorithms selected by its ciphersuites. Thus, we address soft-

ware security, protocol security, and cryptographic security in a

common implementation framework. In the process, we revisit

known attacks and discover new ones: an alert fragmentation

attack (§II), and a fingerprinting attack based on compression

(§IV). Our two main goals are as follows:

(1) Standard Compliance Following the details of the RFCs,

we implement and verify the concrete message parsing and

processing of TLS. We also support multiple versions (from

SSL 3.0 to TLS 1.2) and ciphersuites, protocol extensions, ses-

sions and connections (with re-handshakes and resumptions),

alerts and errors, and data fragmentation.

The TLS standard specifies the messages exchanged over

the network, but not its application programming interface

(API). Since this is critical for using TLS securely, we design

our own API, with an emphasis on precision—our API is

similar to those provided by popular implementations, but

gives more control to the application, so that we can express

stronger security properties: §IV explains how we reflect frag-

mentation and length-hiding, to offer some protection against

traffic analysis; §VI explain how we report warnings, changes

of ciphersuites, and certificate requests.

We illustrate our new API by programming and verifying

sample applications. We also implement .NET streams on

top of it, and program minimal web clients and servers,

to confirm that our implementation interoperates with main-

stream implementations, and that it offers reasonable usability

and performance. (In contrast, most verified models are not

executable, which precludes even basic functionality testing.)

Experimentally, our implementation also provides a convenient

platform for testing corner cases, trying out potential attacks,

and analyzing proposed extensions and security patches. In the

course of this work, we submitted errata to the IETF.
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(2) Verified Security Following the provable security ap-

proach of computational cryptography, we show the privacy

and integrity of bytestreams sent over TLS, provided their

connection keys were established using a strong ciphersuite

between principals using secure long-term keys. Unavoidably,

an active adversary may observe and disrupt encrypted net-

work traffic below TLS. In brief, our main results show that

a probabilistic, polynomial adversary cannot achieve more,

except with a negligible probability: even with chosen adaptive

plaintext and ciphertext bytestreams, it learns nothing about

the content of their communication, and cannot cause them to

accept any other content. These results are expressed using in-

distinguishability games, whereby the communication content

is replaced with zeros before sending, and restored by table

lookups after receiving. Thus, we achieve the kind of cryp-

tographic results traditionally obtained for secure channels,

but on an unprecedented scale, for an executable, standard-

compliant, 5,000-line functionality, rather than an abstract

model of TLS—dozens of lines in pseudocode in Jager et al.

[33, fig. 3] and Gajek et al. [29, p. 4].

In the rest of this section, we summarize the challenges

involved in achieving our goals, namely accounting for the

complexity of TLS, and automatically verifying a large im-

plementation with precise cryptographic guarantees.

A. Transport Layer Security

TLS is an assembly of dynamically-configured protocols,

controlled by an internal state machine that calls into a large

collection of cryptographic algorithms. (§II reviews the TLS

architecture.) This yields great flexibility for connecting clients

and servers, potentially at the cost of security, so TLS appli-

cations should carefully configure and review their negotiated

connections before proceeding. Accordingly, we prove security

relative to the choice of protocol version, ciphersuite, and

certificates of the two parties.

Versions, Ciphersuites, and Algorithms Pragmatically, TLS

must maintain backward compatibility while providing some

security. Indeed, 5 years after the release of TLS 1.2, which

fixes several security weaknesses, RC4 remains the most

popular cipher, most browsers still negotiate TLS 1.0, and

many still accept SSL2 connections! It is thus crucial to

assess the security of TLS as a whole, even if its usage of

cryptography is outdated. As most implementations do, our

codebase supports all protocol versions from SSL 3.0 till

TLS 1.2 [28, 21–23]. We decided not to support SSL2 at all,

since its usage is unsafe and now prohibited [55].

Many algorithms, such as MD5, DES, or PKCS#1, are

eventually broken or subsumed by others, so TLS features

cryptographic agility, enabling users to choose at runtime be-

tween different methods and algorithms for similar purposes.

Ciphersuites and extensions are its main agility mechanisms;

together with the protocol version, they control the method

and algorithms for the key exchange and the transport layer.

Older ciphersuites can be very weak, but even the latest

ciphersuites may not guarantee security: as a cautionary tale,

Brumley et al. [15] report, exploit and fix a “bug attack”

in the implementation of elliptic-curve multiplication within

OpenSSL, which left many advanced ciphersuites exposed

to attacks for years. Accordingly, our formal development

fully supports cryptographic agility, in the spirit of Acar

et al. [1], and provides security relative to basic cryptographic

assumptions (say, IND-CPA or PRF) on the algorithms chosen

by the ciphersuite. Thus, we obtain security for connections

with strong ciphersuites running side-by-side with insecure

connections with weak ciphersuites.

Side Channels and Traffic Analysis Our API provides fine-

grained control for fragmentation and padding; this enables

applications to control the amount of information they leak

via network traffic analysis. Our verification also explicitly

handles many runtime errors, thus reflecting their potential use

to leak secret information. Thus, our verification catches the

padding oracle attack of TLS 1.0 [56, 17] as a type-abstraction

error. We also independently caught the truncated-MAC attack

reported by Paterson et al. [50].
On the other hand, our verification does not account for

timing. Following the standard, we only try to mitigate known

timing channels by having a uniform flow, for instance ensur-

ing that the same cryptographic operations are performed, both

in normal execution and in error conditions.

B. Compositional, Automated Verification
To cope with the complexity of TLS and prove security on

a large amount of code, we rely both on compositionality and

on automation. We extend the cryptographic verification by

typing approach of Fournet et al. [27]. The main technical

novelty is to keep track of conditional security using type
indexes (see §III). For instance, the index of a TLS connection

includes the algorithms and certificates used to establish the

connection, so that we can specify the security of each

connection relative to this context. Cryptographically, indexes

are similar to session identifiers in the universal composability

(UC) framework. Another central idea is to rely on type
abstraction to specify confidentiality and integrity, enabling

us to express our main security properties in just a few lines

of typed declarations.
Our presentation focuses on the main API and the interfaces

of two core internal modules. The stateful authenticated en-

cryption module (StAE), explained in §IV, implements record-

layer cryptography. The handshake module (HS) implements

the key exchange mechanisms of TLS. We specify ideal typed

interfaces for StAE and HS that suffice to prove application-

level security for TLS. Our main formal contributions are

to verify that the record layer securely implements the StAE
interface for a range of authenticated encryption mechanisms

(Theorem 3 in §IV); the handshake protocol implements

the HS interface, with security guarantees when using RSA

and DH (Theorem 4 in §V); and the TLS protocol logic,

dealing with application data, alerts, and multiple connections,

securely implements our main API, given any secure imple-

mentations of StAE and HS (Theorem 5 in §VI).

Prior Verification Work on TLS Implementations. We limit

our discussion of related work to the verification of implemen-
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tations; other works on formal aspects of TLS are discussed

through the paper. To our knowledge, Bhargavan et al. [11]

present the only prior computational security theorems for a

TLS implementation. They conduct extensive verification of

the protocol logic by model extraction from F# to ProVerif [12]

and CryptoVerif [13]. On the other hand, their Dolev-Yao

models do not cover binary formats (excluding any bytestream,

fragmentation and padding issue), nor the properties of the

underlying algorithms, and their computational models cover

only the cryptographic core of one ciphersuite. Their results

are less precise than ours (notably as regards secrecy) and

blind to the cryptographic weaknesses of TLS 1.0.
Chaki and Datta [18] verify the SSL 2.0/3.0 handshake

implementation in OpenSSL by model checking. Their anal-

ysis finds rollback attacks but applies only to fixed configu-

rations, and they assume a symbolic model of cryptography.

Others [35, 3] verify Java implementations of the handshake

protocol using logical provers, also in the symbolic model.

Contents The paper is organized as follows. §II informally

presents and evaluates our modular reference implementation.

§III explains cryptographic verification by typing. §IV handles

stream encryption. §V deals with the handshake. §VI presents

our main API and theorems for TLS. §VII discusses limitations

of our approach and future work.
TLS is large and complicated, and so is any formal security

statement on its implementation. We strive to give a precise

description of our results using sample code and interfaces, but

we necessarily omit many details. We refer to the standard for

a complete protocol description, and to our full development

at http://mitls.rocq.inria.fr/ for the annotated

source code, a companion paper with additional cryptographic

assumptions and proofs, and a discussion of attacks.

II. A MODULAR IMPLEMENTATION OF TLS

A. API Overview
Our application interface (see Fig. 4 in §VI) is inspired by

typical APIs for TLS libraries and provides similar functional-

ities. It is thread safe, and does not allocate any TLS-specific

thread, essentially leaving scheduling and synchronization in

the hands of the application programmer. Cryptographically,

we can thus treat our whole implementation as a probabilistic

polynomial time (p.p.t.) module, to be composed with a main

p.p.t. program representing the adversary.
Our reference implementation consists of a dynamically

linked library (DLL) with an interface TLSInfo that declares

various types and constants, e.g. for ciphersuites, and a main

interface TLS for controlling the protocol. To use it, the

application programmer provides a DataStream module that

uses TLSInfo and defines the particular streams of plaintext

application data he intends to communicate over TLS, and a

main program that calls TLS. In addition, application code

may use any other libraries and export its own interfaces.
Application code may create any number of TLS connec-

tions, as client or server, by providing some TCP connection

and some local configuration that indicates versions, cipher-

suites and certificates to use, and sessions to re-use. Our API

returns a stateful connection endpoint (with an abstract type)

that can then be used by the application to issue a series of

commands, such as read and write to communicate data once

the connection is opened, rekey and rehandshake to trigger

a new handshake, and shutdown to close the connection.

Each command returns either a result, for instance the data

fragment that has been read, or some event, for instance

an alert, a certificate authorization request, or a notification

that the current handshake is complete. At any point, the

application can read the properties of its connection endpoints,

which provide detailed local information about the current

ciphersuites, certificates, and security parameters, bundled in

a datatype named an epoch. A given connection may go

through a sequence of different epochs, separated by complete

handshakes, each with their own security parameters, so the

application would typically inspect the new connection epoch

when notified that the handshake is complete, and before

issuing a write command for sending any secret data.

B. Modules and Interfaces

Our implementation is written in F#, a variant of ML for

the .NET platform, and specified in F7 [9]. It is structured

into 45 modules (similar to classes or components in other

languages) each with an interface and an implementation. Each

interface declares the types and functions exported by the

module, copiously annotated with their logical specification.

We informally present the verification approach developed

in the next sections. We use interfaces to specify the security

properties of our modules and to control their composition.

In particular, §III explains how we use interfaces to express

various cryptographic properties.

The F7 typechecker can verify each module independently,

given as additional input a list of interfaces the module

depends on. Assuming the specification in these interfaces,

F7 verifies the module implementation and checks that it

meets the specification declared in its own interface. Both

tasks entail logical proof obligations, which are automatically

discharged by calling Z3 [19], an SMT solver. Our ‘makefile’

automates the process of verifying modules while managing

their dependencies, with a target <Module>.tc7 (representing

a typing lemma) for typechecking each <Module>.

After verification, all F7 types and specifications are erased,

and the module can be compiled by F#.

Our type-based cryptographic verification consists of a

series of idealization steps, one module at a time. The numbers

in Fig. 1(a) indicate the order of idealization. Each step is con-

ditioned by cryptographic assumptions and typing conditions,

to ensure its computational soundness; it enables us to replace

a concrete module implementation by a variant with stronger

security properties; this variant can then be re-typechecked,

to show that it implements a stronger ideal interface, which

in turn enables further steps. Finally, we conclude that the

idealized variant of our TLS implementation is both perfectly

secure (by typing) and computationally indistinguishable from

our concrete TLS implementation.
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8 

9 Error Versions SSL 3.0; TLS 1.0; TLS 1.1; TLS 1.2
Key Exchange RSA; DHE; DH anon
Cipher NULL; RC4 128; 3DES EDE CBC;

AES 128 CBC; AES 256 CBC
MAC NULL; MD5; SHA; SHA256
Extensions Renegotiation Indication

(b)

Component F# (LOC) F7 (LOC) F7 (S)
Base 945 581 11

TLS Record 826 511 77
Handshake/CCS 2 400 777 413

Alert Protocol 184 119 105
AppData Protocol 139 113 34

TLS API 640 426 309
Total 5 134 2 527 949

(c)

Figure 1. (a) Modular implementation of TLS, (b) Implemented features and algorithms, (c) Code size and verification time.

C. Modular Architecture for TLS

Fig. 1(a) gives our software architecture for TLS. Each box

is an F# module, specified by a typed interface. These modules

are (informally) grouped into components.

In the Base component, Bytes wraps low-level, trusted .NET

primitive operations on byte arrays, such as concatenation;

TCP handles network sockets, and it need not be trusted;

CoreCrypto is our interface to trusted core algorithms, such

as the SHA1 hash function and the AES block cipher; it can

use different cryptographic providers such as .NET or Bouncy

Castle. Other modules define constants, ciphersuite identifiers

and binary formats; these modules are fully specified and

verified. TLSInfo defines public data structures for sessions,

connections and epochs (see §V) giving access for instance to

the negotiated session parameters.

The TLS protocol is composed of two layers. The record

layer is responsible for the secrecy and authenticity of in-

dividual data fragments, using the authenticated encryption

mechanisms described in §IV. It consists of several modules:

Record is TLS-specific and deals with headers and content

types, whereas StAE, LHAE and ENC provide agile encryption

functionalities, each parameterized by a plaintext module, as

explained in §III. Finally, MAC provides various agile MAC

functions on top of CoreCrypto and implements the ad hoc

keyed hash algorithms of SSL 3.

The upper layer consists of four sub-protocols, respectively

dealing with the handshake, change-cipher-spec signals (CCS),

alerts, and application data. The Dispatch module interleaves

the outgoing messages sent by these sub-protocols into a

single stream of fragments, tagged with their content type,

possibly splitting large messages into multiple fragments, and

conversely dispatches incoming fragments to these protocols,

depending on their content type. Not all possible message in-

terleavings are valid; for instance application data should never

be sent or accepted before the first handshake successfully

completes (establishing a secure channel), and no data should

be delivered after receiving a fatal alert. Except for these

basic rules, the RFC does not specify valid interleavings; this

complicates our verification and, as illustrated below, enables

subtle attacks when combined with fragmentation. Dispatch
relies on a state machine to enforce the safe multiplexing

of sub-protocols; to this end, each sub-protocol signals any

significant change in its own internal state. For instance, the

handshake protocol signals the availability of new keys, the

sending of its Finished message, and its successful completion.

To our knowledge, our model is the first to account for this

important aspect of TLS implementations.
The handshake protocol, detailed in §V, negotiates the

connection parameters (such as protocol versions, ciphersuites,

and extensions) and establishes the shared keys for the record

layer. To this end, it relies on generic PRF modules and

key exchange algorithms (e.g. RSA-based encryption and

Diffie-Hellman exchange). In the TLS terminology, a session
identifies a set of security parameters, the peers, and a shared

master secret. Each full handshake yields a new session,

with its own master secret. Instead, an abbreviated handshake
resumes an existing session, retrieving its master secret from a

local database. In both cases (full or abbreviated), a new epoch
begins, with keys derived from the master secret together with

some fresh random values. The same connection may rely

on several successive epochs to refresh keys, or to achieve

stronger peer authentication, possibly with different security

properties. Conversely, several connections may resume from

the same session.
The alert protocol handles warnings and fatal errors; it tells

the dispatcher when to close a connection.
The application-data protocol handles messages on behalf

of the TLS application; it is parameterized by a DataStream
module provided by the application.

At the toplevel, TLS implements our main API, described

in §VI. Before evaluating our implementation, we discuss two

attacks involving fragmentation and multiple epochs.

Renegotiating Peer Identities (an existing attack) Ray [52]
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presents an attack exploiting the mis-attribution of application

data to epochs. Until a a recent protocol extension [53], TLS

did not cryptographically link successive epochs on the same

connection: as each handshake completes, the two parties

agree on the new epoch, but not necessarily on prior epochs.

Their man-in-the-middle attack proceeds as follows: when a

target client tries to connect to a server, the attacker holds the

client connection, performs a handshake with the server, sends

some (partial) message to the server, then forwards all client-

server traffic. As the client completes its first handshake, the

server instead enters its second epoch. If the server ignores

the change of epoch, then it will treat the message injected by

the attacker concatenated with the first message of the client

as a genuine message of the client.

Surprisingly, existing TLS APIs have no reliable mechanism

to notify epoch changes, even when the peer identity changes.

Instead, the extension implicitly authenticates prior epochs in

Finished messages [53]. We implement this extension, and in

addition, our API immediately notifies any epoch change, and

separately tracks application data from different epochs.

Alert fragmentation (a new attack) We discovered another,

similar interleaving attack, against all versions of TLS, this

time involving the alert protocol. Unlike application data, alert

messages can be sent and received before completing the first

handshake. Unlike handshake messages, alert messages are not

included in the Finished message computation. Alert messages

are two bytes long, hence they can also be fragmented by the

attacker. Our attack proceeds as follows: when a client-server

connection begins, the attacker injects a one-byte alert frag-

ment x during the first handshake; according to the standard,

this byte is silently buffered; any time later, after completion

of the handshake, as the first genuine 2-byte alert message yz
is sent on the secure connection, the alert xy is received and

processed instead. This clearly breaks alerts authentication.

Experimentally, we confirmed that at least OpenSSL is

subject to this attack, transforming for instance a fatal error

or a connection closure into an ignored warning, while other

implementations reject fragmented alerts—a simple fix, albeit

against the spirit of the standard. Our implementation simply

checks that the alert buffer is empty when a handshake

completes, and otherwise returns a fatal error.

D. Experimental Evaluation

Our implementation currently supports the protocol ver-

sions, algorithms, and extensions listed in Fig. 1(b), and hence

all the ciphersuites obtained by combining these algorithms.

Conversely, our implementation does not yet support elliptic

curve algorithms, AEAD ciphers such as AES-GCM, most

TLS extensions, or TLS variants such as DTLS.

Interoperability We tested interoperability against the com-

mand line interface of OpenSSL 1.0.1e and GnuTLS 3.1.4,

and against the NSS 3.12.8 and the Oracle JSSE 1.7 libraries.

We also implemented the .NET Stream interface on top of our

TLS API, used it to program a multi-threaded HTTPS server,

and tested it against Firefox 16.0.2, Safari 6.0.2, Chrome

Ciphersuite F# (BC) OpenSSL Oracle JSSE
KEX Enc MAC HS/s MiB/s HS/s MiB/s HS/s MiB/s
RSA RC4 MD5 305.25 30.17 292.04 226.51 431.66 53.34
RSA RC4 SHA 291.37 27.85 288.74 232.42 446.69 39.65
RSA 3DES SHA 267.09 8.40 283.04 22.95 421.59 8.34
RSA AES128 SHA 278.71 18.54 285.35 234.41 419.20 27.58
RSA AES128 SHA256 278.71 16.50 281.92 128.33 432.70 23.69
RSA AES256 SHA 291.37 16.86 282.89 204.47 - -
RSA AES256 SHA256 267.09 15.16 307.72 119.42 - -
DHE 3DES SHA 20.16 8.37 58.07 22.99 45.72 8.21
DHE AES128 SHA 20.41 18.59 57.06 244.30 46.08 27.72
DHE AES128 SHA256 19.99 16.45 58.33 128.34 45.03 23.84
DHE AES256 SHA 20.29 16.72 56.83 203.01 - -
DHE AES256 SHA256 20.16 14.86 59.52 120.96 - -

Figure 2. Performance benchmarks (OpenSSL 1.0.1e as server).

23.0.1271.64 and Internet Explorer 9.0.5 web browsers, using

different protocol versions and ciphersuites. Conversely, we

programmed and tested an HTTPS client against an Apache

2.2.20-mod-ssl web server. Our implementation correctly in-

teroperates, both in client and in server mode, with all these

implementations, for all the protocol versions and ciphersuites

we support. Of these, NSS only implements up to TLS 1.0 and

Oracle JSSE does not support AES256. Our interoperability

tests included session resumption, rekeying, and renegotiation.

Performance Evaluation We evaluate the performance of

our implementation, written in F# and linked to the Bouncy

Castle C# cryptographic provider, against two popular TLS

implementations: OpenSSL 1.0.1e, written in C and using

its own cryptographic libraries, and Oracle JSSE 1.7, written

in Java and using the SunJSSE cryptographic provider. Our

code also consistently outperforms the rudimentary TLS client

distributed with Bouncy Castle.

We tested clients and servers for each implementation

against one another, running on the same host to minimize

network effects. Figure 2 reports our results for different

clients and ciphersuites with OpenSSL as server. We measured

(1) the number of Handshakes completed per second; and

(2) the average throughput provided on the transfer of a

400 MB random data file. (Server-side results are similar.) For

RSA key exchange, our implementation has a handshake rate

similar to that of OpenSSL but slower than Oracle JSSE. Our

throughput is significantly lower than OpenSSL and is closer

to Oracle JSSE. The numbers for throughput and for DHE key

exchanges are closely linked to the underlying cryptographic

provider, and we pay the price of using Bouncy Castle’s man-

aged code. (Using instead the .NET native provider increases

the throughput by 20% but hinders portability.)

Our reference implementation is designed primarily for

modular verification, and has not (yet) been optimized for

speed. Notably, our code relies on naı̈ve data structures that

facilitate their specification. For example, we represent bytes

using functional arrays, which involve a lot of dynamic al-

location and copying as record fragments are processed. A

trusted library implementing infix pointers to I/O buffers with

custom memory management would improve performance,

with minimal changes to our verified code, but we leave such

optimizations as future work.

Code Size and Verification Time Compared with production
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code, our implementation is smaller; it has around 5 KLOC

excluding comments, compared with about 50 KLOC for

OpenSSL (only TLS code) and 35 KLOC for Oracle JSSE.

This different is due partly to the fact that we support fewer

ciphersuites and extensions; the rest can be attributed to the

brevity of F# code. Still, we believe ours is the first cryp-

tographic verification effort at this scale. Fig. 1(c) gives the

size of each component in our implementation, the size of its

F7 specification, and the verification time for the typechecked

components. Overall, typechecking the whole implementation

takes 15 minutes on a modern desktop.

III. CRYPTOGRAPHIC SECURITY BY TYPING

We verify TLS using F7, a refinement typechecker for F#.

In addition to ordinary type safety (preventing e.g. any buffer

overflow) it enables us to annotate types with logical specifi-

cations and to verify their consistency by typing. Its core type

system [9] has been extended in several directions [10, 54, 5–

7]; in particular Swamy et al. [54] provide a mechanized theory

for a language that subsumes F7. We follow the notations and

results of its probabilistic variant [27], presented below.

F7 Types A program is a sequential composition of modules,

written A1 ·A2 ·. . .·An. Each module has a typed interface that

specifies the types, values, and functions it exports. A module

is well-typed, written I1, . . . , I� � A � I , when it correctly

implements I using modules with interfaces I1, . . . , I�. A

program is well-typed when its modules are well-typed in

sequence. The core typing judgment I � e : t states that

expression e has type t in typing environment I . Types t
include standard F# types like integers, references, arrays and

functions, plus refinement types and abstract types.

Logical refinements Let φ range over first-order logical for-

mulas on F# values. The refinement type x:t{φ} represents

values x of type t such that formula φ holds (the scope

of x is φ). For instance, n:int{0 ≤ n} is the type of positive

integers. Formulas may use logical functions and predicates,

specified in F7 interfaces or left uninterpreted. For instance, let

‘bytes’ abbreviate the type of byte arrays in F#; its refinement

b:bytes{Length(b)=16}, the type of 16-byte arrays, uses a

logical function Length on bytes. and, to verify that byte

arrays have this type, it may be enough to specify Length
for empty arrays and concatenations. Refinements may specify

data formats as above (for integrity) and also track runtime

events (for authenticity). For instance, c:cert{Authorized(u,c)}
may represent an X.509 certificate that user u has accepted

by clicking on a button. Formally, such security events are

introduced as logical assumptions (assume φ) in F# code and

F7 interfaces; conversely, they may appear in verification goal,

expressed as assertions (assert φ). Logical specifications and

assumptions must be carefully written and reviewed, since they

condition our security interpretation of types [see e.g. 10, 54].

Abstract Types An interface may declare a type as abstract

(e.g. type key) and keep its representation private (e.g. 16-byte

arrays); typing then ensures that any module using this inter-

face will treat key values as opaque, thereby preserving their

integrity and secrecy. Besides, abstract types may themselves

be indexed by values, e.g. type (;id:t)key is the type of keys

indexed by a value id of type t, which may indicate the usage

of those keys; typing then guarantees that any module using

the interface won’t mix keys for different usages.

The rest of the type system tracks refinements and abstract

types. For example, the dependent function type x:t{φ} →
y:t′{φ′} represents functions with pre-condition φ and post-

condition φ′ (the scope of x is φ, t′ and φ′), and both t and t′

may be indexed abstract types. We will see various examples

in the types for authenticated encryption below.

Safety and Perfect Secrecy in F7 (Review) Fournet et al.

[27] formalize a probabilistic variant of F7 and develop

a framework for the modular cryptographic verification of

protocols coded in F#. (Küsters et al. [41] adopt a similar

approach for programs in Java.) We recall their main theorems.

A program is safe if, in every run, every assert logically

follows from prior assumes. The main property of the type

system is that well-typed expressions are always safe.

Theorem 1 (Type Safety [27]): If ∅ � A : t, A is safe.
Perfect secrecy is specified as probabilistic equivalence: two

expressions A0 and A1 are equivalent, written A0 ≈ A1, when

they return the same distribution of values. We use abstract

types to automatically verify secrecy, as follows. Suppose

a program is written so that all operations on secrets are

performed in a pure (side-effect free) module P that exports

a restrictive interface Iα with an abstract type α for secrets

(concretely implemented by, say, a boolean). By typing, the

rest of the program can still be passed secrets, and pass them

back to P , but cannot directly access their representation. With

suitable restrictions on Iα, the result of the program then does

not depend on secrets and their operations:

Theorem 2 (Secrecy by Typing [27]): If ∅ � Pb � Iα for
b = 0, 1 and Iα � A : bool, then P0 ·A ≈ P1 ·A.
Intuitively, the program A interacts with different secrets, kept

within P0 or P1, but it cannot distinguish between the two.

Theorem 2 generalizes from single types α to families of

indexed types, intuitively with a separate abstract type at every

index. The formal details are beyond the scope of this paper;

we refer to [54] for a similar development.

In Theorems 1 and 2, the module A may be composed of

libraries for cryptographic primitives and networking, protocol

modules, and the adversary. This adversary can be treated as

an untrusted ‘main’ module, simply typed in F#, without any

refinement or abstract type. In contrast, the internal composi-

tion and verification of the other modules of the program can

rely on and are in fact driven by typed F7 interfaces.

Asymptotic Safety and Secrecy To model computational

security for cryptographic code, [27] also defines asymptotic

notions of safety and secrecy for expressions Aη parameterized

by a security parameter η, which is treated as a symbolic

integer constant and is often kept implicit, writing A instead

of (Aη)η≥0. Asymptotic safety states that the probability of an

assertion failing in Aη is negligible. The corresponding secrecy

notion is stated in terms of asymptotic equivalence: two closed
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boolean expressions A0 and A1 (implicitly indexed by η) are

asymptotically equivalent, written A0 ≈ε A1, when the statis-

tical distance 1
2

∑
M=true,false |Pr[A0 ⇓M ]− Pr[A1 ⇓M ]| is

negligible. These asymptotic notions apply only to modules

that meet polynomial restrictions, so that all closed programs

resulting from their composition always terminate in polyno-

mial time. (See [41] for a detailed discussion of polynomial-

time notions for code-based simulation-based security.)

Games, ideal functionalities, and typed interfaces. We

now explain how to use F7 typing to model cryptographic

primitives and protocols, using authenticated encryption (AE)

as a running example—see §IV and §VI for its TLS elabo-

rations. Let C be a module that implements a cryptographic

functionality or protocol. We may define security for C in

three different styles: using games, ideal functionalities, or

ideal interfaces. To begin with, we suppose that C manages a

single key internally and does not allow for key compromise.

We define an interface IC with two functions for encryption

and decryption, for now assuming that plaintexts and ciphers

are fixed-sized byte arrays. Decryption returns an option, that

is, either some plaintext or none, in case of decryption error.

val ENC: p:plain → c:cipher
val DEC: c:cipher → o:plain option

Games Games provide oracle access to C; this may be

programmed as a module G with an interface IG that exports

oracle functions. Games come in two flavors: (1) Games with

a winning condition, which can be expressed by the adversary

breaking a safety assertion, (2) Left-or-right games, in which

the adversary has to guess which of the two variants G0 or

G1 of the game it is interacting with. In our framework, this

may be defined as C ·G0 ·A ≈ε C ·G1 ·A.

Typical games for modeling the authenticity and confi-

dentiality of AE are INT-CTXT and IND-CPA. The former

requires that the adversary forge a valid ciphertext; the latter

requires that an adversary that freely chooses (x0, x1) cannot

distinguish between encryptions of x0 and encryptions of x1.

(See [27] for examples of games coded in F#.)

Ideal Functionalities with Simulators An ideal functionality

F for C implements the same interface IC but provides nicer

properties. F only needs to implement C partially; the rest of

the implementation that is not security critical may be provided

by a simulator S, which is only required to exist. For primitives

such as AE, we may design F so that C itself is a valid

simulator, i.e. C ·A ≈ε C · F ·A. Intuitively, emulating such

a functionality corresponds to being secure with respect to a

left-or-right game, in which the left game just does forwarding

and the right game applies the filter F .

Ideal Interfaces Instead of code, we may use types to express

perfect security properties. For AE, for instance, the ideal

interface below specifies ciphertext integrity (INT-CTXT):

val ENC: p:plain → c:cipher {ENCrypted(p,c)}
val DEC: c:cipher→ o:(plain option)

{∀p. o=Some(p) ⇔ENCrypted(p,c)}
This interface is more precise than IC : ENC now has a

post-condition ENCrypted(p,c) stating that its result c is an

encryption of its argument p. (ENC may assume this as an

event.) Hence, the postcondition of DEC states that decryption

succeeds (that is, returns Some p for some plaintext p) only

when applied to a cipher produced by ENC p.

A module is secure with respect to an ideal interface I i
C

when it asymptotically implements it, in the following sense:

Definition 1: C is I i
C-secure if there exists a module C i

with � C i � I i
C such that, for all p.p.t. expressions A with

I i
C � A, we have C ·A ≈ε C

i ·A.

For instance, one may use an ideal functionality F such that

F � I i
C . The advantage of type-based security is that one can

then automatically continue the proof on code that uses I i
C .

Secrecy using Ideal Interfaces To define confidentiality using

types, we introduce concrete and ideal interfaces for the

module that defines plaintexts for encryption:

Definition 2: A plain interface IPlain is of the form

type repr = b:bytes {Length(b) =plainsize}
type plain
val repr: plain → repr
val plain: repr → plain

The type repr gives the representation of plaintexts, whereas

the type plain is abstract, with functions repr and plain to

convert between the two. (These may be implemented as

the identity function.) The ideal plain interface I i
Plain is IPlain

without these two functions. Intuitively, removing them makes

the interface parametric in type plain, so that we can apply

Theorem 2. Using ideal plain interfaces, we give an interface-

based definition of secrecy.

Definition 3: C is I i
Plain � I i

C-secure when there exists a

module Ci with I i
Plain � Ci � I i

C such that, for all p.p.t.

modules P with � P � IiPlain, � P � IPlain, and A with

IPlain, I
i
C � A, we have P · C ·A ≈ε P · Ci ·A.

Parametricity guarantees both plaintext secrecy and integrity

(but not ciphertext integrity). For example, a protocol using

AE may define type plain = m:repr{Msg(m)} where Msg is

the protocol specification of an authentic plaintexts and then

rely on typing to ensure authenticity of decrypted plaintexts.

Multi-instance functionalities Ideal functionalities and inter-

faces compose in the following intuitive sense: if the interfaces

IC and IC′ are disjoint, C is I i
C-secure, and C ′ is I i

C′ -secure,

then C ·C ′ is I i
C , I

i
C′ -secure, and similarly with functionalities.

Rather than a fixed number of modules, we may use a

module that support multiple, dynamic instances, via a code

transformation that adds an index value (plus e.g. a key) to

every call. (Software libraries are typically multi-instance.)

For a keyed primitive, this module may generates a key at

each call to some function GEN: id:index → (;id)k. The user

provides the index, and type safety guarantees that materials

with different indexes are not mixed. For example, an ideal

multi-instance interface for AE is:

type (;id:index)key
val GEN: id:index → (;id)key
val ENC: id:index → (;id)key → p:(;id)plain→

c:cipher {ENCrypted(id,p,c)}
val DEC: id:index → (;id)key → c:cipher →

o:(;id)plain option { ∀p. o = Some(p) ⇔ENCrypted(id,p,c) }
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This interface is parameterized by a plain module that de-

fines an indexed abstract type (;id:index)plain, and uses an

ENCrypted predicate with an extra index argument. Some

multi-instance interfaces rely on usage restrictions that cannot

be enforced by typing. We document these restrictions as side

conditions. For instance, to achieve CTXT, we would usually

require that users never generate two keys with the same index.

Definition 4: A program A is a restricted user of I i
C when

I i
C � A and A calls GEN with pairwise distinct indexes.

Weak cryptographic algorithms Since indexed types keep

different instances separated, we may as well use different
algorithms, as long as they meet the same interface. For

example, the index may include the name of the algorithm.

Interestingly, this provides support for dealing with weak

cryptographic algorithms, that is, algorithms that do not meet

their specified security property. To this end, we introduce a

predicate on indexes, Strong(id), that holds when the algorithm

is cryptographically secure, and we refine our ideal interface

so that it offers security guarantees only at strong indexes.

For AE, we have two security properties, so we introduce

predicates StrongAuth for authenticity and Strong for authen-

ticated encryption. Hence, our postcondition of DEC now

is {StrongAuth(id)⇒ (∀p.o = Some(p) ⇔ENCrypted(id,p,c))}
We also generalize our ideal plain interface, leaving the

plain and repr functions available, but with preconditions that

restrict their usage to weak algorithms:

val plain: id:index{ not(StrongAuth(id)) } → repr → (;id)plain
val repr: id:index{ not(Strong(id)) } → (;id)plain → repr

Intuitively, this enables AE to forge ciphertexts (or access

plaintexts) at weak indexes, reflecting the fact that we do not

have cryptographic security for their concrete algorithms.

Key compromise Cryptographic keys can be corrupted. As a

further refinement of our interfaces, we consider two forms of

key compromises: the leakage of honestly generated keys, and

adversarially chosen keys. To this end we introduce a predicate

on indexes, Corrupt(id), that holds when keys are corrupted.

To provide the adversary with the possibility to compromise

keys we extend our indexed interfaces I i
C with functions

val LEAK: id:index {Corrupt(id)} → (;id)key → bytes
val COERCE: id:index {Corrupt(id)} → bytes → (;id)key

and we adapt our ideal interfaces to provide security guar-

antees conditioned by the predicate not(Corrupt(id)), e.g., for

AE, the postcondition of DEC becomes { not(Corrupt(id))∧
StrongAuth(id)⇒ (∀p. o = Some(p) ⇔ENCrypted(id,p,c))}.

As noted, e.g., by [4, 40], an idealized module Ci that

first encrypts a message and then leaks a key cannot be both

indistinguishable from a real encryption scheme C and para-

metric in the message. Given a ciphertext that is independent

of the message, efficient encryption schemes simply do not add

enough ciphertext entropy to allow the simulation of adaptive

corruptions. To avoid the commitment problem, we require

Corrupt to be monotonic, and fixed after the first encryption

of a secret message.

In our TLS formal development, indexes are similar,

but they keep track of more detailed information, for in-

stance about the ciphersuite and certificates used in the

handshake to generate the keys. In §IV, we will use two

main predicate on indexes, Safe that guarantees both au-

thenticity and secrecy for the transport layer, and Auth
that guarantees authenticity but not necessarily secrecy, logi-

cally defined as Auth(id)
�
= not(Corrupt(id)) ∧ StrongAuth(id)

and Safe(id)
�
= not(Corrupt(id)) ∧ Strong(id). For simplicity,

we do not model the independent corruption of connections

after key establishment, so the Corrupt predicate will be

determined by the handshake, as the negation of its Honest
predicate on long-term keys.

IV. AUTHENTICATED ENCRYPTION FOR TLS STREAMS

We briefly describe the record layer, explain the new length-

hiding features of our API, then outline our results for authen-

ticated encryption in TLS.

Fragment; Compress; MAC; Pad; then Encrypt For each

connection epoch, the transport layer runs two independent

instances of stateful authenticated encryption (StAE) for com-

municating sequences of data fragments in both directions. The

handshake creates these instances according to the suffix of the

negotiated ciphersuite (after WITH), and provides them with

adequate keying materials. In this section, we consider only

the usual MAC-then-encrypt ciphersuites, parameterized by a

symmetric encryption algorithm (3DES, AES, or RC4) and a

MAC algorithm (e.g., HMAC with SHA1); our implementation

also supports all authentication-only ciphersuites and has a

placeholder for GCM encryption.

From protocol messages down to network packets, StAE

proceeds as follows: (1) the message is split into fragments,

each containing at most 214 bytes; (2) each fragment is

compressed using the method negotiated during the handshake,

if any; (3) each fragment is appended with a MAC over its

content type, protocol version, sequence number, and contents;

(4) when using a block cipher, each fragment is padded, as

detailed below; (5) the resulting plaintext is encrypted; (6)

the ciphertext is sent over TCP, with a header including the

protocol version, content type, and length.

The details of fragmentation and padding are implemen-

tation dependent, but those details matter inasmuch as they

affect cryptographic security and network traffic analysis.

Traffic Analysis and Fingerprinting Even with perfect

cryptography, traffic analysis yields much information about

TLS applications [25]. For example, compression may reveal

redundancy in the plaintext when both plaintext and ciphertext

lengths are known [37]; this suffices to break any IND-CPA

based notion of secrecy. More surprisingly, TLS first fragments

then compresses, hence sequences of ciphertext lengths may

leak enough information to identify large messages being

transferred. Thus, we implemented a new attack showing that

an eavesdropper can uniquely identify JPG images and MP3

songs selected from a database, simply by observing short sub-

sequences of ciphertext lengths. The attack is most effective

against RC4 ciphersuites, but also succeeds against block

ciphers with minimal padding.
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Accordingly, our implementation disables compression, and

our formal results apply only to connections where TLS-level

compression is disabled.

TLS is not designed to prevent traffic analysis, but it does

provide countermeasures when using a block cipher: padding

before encryption hides the actual plaintext length and, by

inserting extra padding beyond the minimal required to align

to the next block boundary, one can hide a larger range of

plaintext lengths. The padding may be any of the following

256 arrays [|0|], [|1; 1|], . . . , [|255;. . .; 255|] as long as the

resulting plaintext is block-aligned. Most implementations use

minimal padding; others, such as GnuTLS [45], randomly

select any of the correct paddings, but per-fragment padding

schemes are often statistically ineffective [25].

A Length-Hiding TLS API Our API lets applications hide

the length of their messages by indexing them with a range
m..n where 0 ≤ m ≤ n. Intuitively, an observer of the

encrypted connection may learn that the plaintext fits within

its range, while its actual length remains secret.

Consider for example a website that relies on personalized

cookies, containing between 100 and 500 bytes. The website

may give cookies the indexed abstract type (;(100,500))data,

hence requesting that their actual length be hidden. The

range (100,500) is treated as public, and suffices to determine

fragmentation and padding. If the connection uses a block

cipher, say AES 128 CBC SHA, then any value of this type

can be uniformly split, MACed, encoded, and encrypted into

two fragments of 36 blocks each. Extending this idea, we im-

plement a deterministic fragmentation and padding algorithm

for block ciphers based only on ranges.

Authenticated Encryption Schemes We present the two

modules that implement multi-instance authenticated encryp-

tion for TLS fragments: first LHAE, featuring indexes, ranges,

and additional data (AD) to be authenticated with the plaintext;

then StAE, implementing stateful encryption on top of LHAE

and organizing fragments into streams.

Length-Hiding Authenticated Encryption (LHAE) We define

IiLHAEPlain�I i
LHAE security for the plaintext interface IiLHAEPlain

outlined below.

type (;id:index,ad:(;id)data,r:range) plain
type (;r:range) rbytes = b:bytes{ fst(r) ≤ Length(b) ≤ snd(r) }
val plain: id:index{not(Auth(id))} →

r:range → ad:(;id)data → (;r)rbytes → (;id,ad,r) plain
val repr: id:index{not(Safe(id))} →

r:range → ad:(;id)data → (;id,ad,r) plain → (;r)rbytes

Each plaintext is indexed by an instance id, its additional

data ad, and its range r. We use the refined type (;r)rbytes
for concrete representation of plaintexts that fit in range r.

The functions plain and repr translate between concrete and

abstract plaintexts. As explained in §III, their precondition

states that LHAE can use them only on weak ids (e.g. for

weak ciphersuites or corrupt keys).

We define the interface I i
LHAE parametrized by IiLHAEPlain; we

omit its COERCE and LEAK functions for brevity.

type (;id:index) key
val GEN: id:index → (;id) key

val ENC: id:index → k:(;id) key → d:(;id) data → r:range →
p:(;id,d,r) plain → (k’:(;id)key ∗ c:cipher)
{CipherRange(id,r,c) ∧ENCrypted(id,d,p,c)}

val DEC: id:index → k:(;id) key → d:(;id) data → c:cipher →
o:(k’:(;id) key ∗ r :range {CipherRange(id,r,c)} ∗

p :(;id,d,r) plain) option
{Auth(id) ⇒ !k’,r,p, (o = Some(k’,r,p) ⇔ENCrypted(id,d,p,c))}

The index id determines the algorithms to use. Keys for a

particular index are created by calling GEN; they encapsulate

the full encryption state, typically an encryption key, a MAC

key, and (when necessary) an IV or stream cipher state.

Encryption ENC takes a plaintext, executes the MAC-

Encode-Encrypt sequence, and returns a cipher and (poten-

tially) updated key. Decryption DEC takes a cipher, decrypts,

decodes, and verifies the MAC; if every check succeeds, it

returns a plaintext and updated key; otherwise it returns an

error. Their logical specification is explained below.

CipherRange(id,r,c) is a predicate asserting that the length

of ciphertext c reveals at most that the length of the plaintext

is in the range r. The secret length of the plaintext is

authenticated, but its range at encryption is not: the range at

decryption may be wider (unless id prescribes a stream cipher

and all three lengths coincide).

ENCrypted(id,d,p,c) is an abstract predicate specified as the

postcondition of encryption, stating that c is an authenticated

encryption of p with additional data d. Its appearance also as

a postcondition of decryption expresses ciphertext integrity:

only correctly-generated ciphertexts successfully decrypt.

Authenticity and confidentiality of plaintexts follow from

parametricity for values of the (;id,d,r)plain type when the

predicates Auth(id) and Safe(id) hold. For instance, when Safe
(id) holds, the user (including the adversary) may learn the

values of their indexes id, d, r, but cannot call the repr
function to read their content, nor call the plain function to

forge their content.

Our implementation supports many protocol versions and

ciphersuites, but provides security only for Strong indexes that

use TLS 1.2 with secure ciphersuites, e.g. AES_CBC with

fresh IVs. Our formal development mirrors a well known

result of Krawczyk [39, Theorem 2] that states that IND-
CPA security of encryption and combined INT-CTXT security

of MAC-then-encrypt afford secure channels. Krawczyk also

shows that stream ciphers as used in TLS provide combined

INT-CTXT security. We use the result of Paterson et al. [50]

to show that the block-cipher-based schemes implemented by

our LHAE module are combined INT-CTXT secure, despite the

unauthenticated padding, for strong block ciphers and MAC

algorithms.

Our concrete implementation of LHAE is a sequence of

modules C
�
= MAC · Encode · ENC · LHAE. Under the com-

bined INT-CTXT assumption, we prove by typing that C
is I i

LHAEPlain � I i
LHAE-secure for IND-CPA secure modules

ENC and for restricted users (using LHAE keys linearly with

pairwise-distinct additional data).
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Stateful Length-hiding Authenticated Encryption (StAE) Pro-

grammed and verified on top of LHAE, StAE authenticates the

position of each plaintext within a stream of messages. To this

end, its ideal plaintext interface I i
StPlain introduces a fourth

index: a log that records the sequence of preceding plaintexts

and additional data.

type (;id:index, l:(;id) log, ad:(;id) data, r:range) stplain

We omit its plain and repr declarations similar to those of

I i
LHAE. The ideal interface I i

StAE for StAE is as follows:

val GEN: id:index →
w:(;id) writer {Log(w) = []} ∗ r:(;id) reader {Log(r) = []}

val ENC: id:index →wr:(;id) writer → d:(;id) data → r:range →
p:(;id,Log(wr),d,r) stplain → c:cipher ∗ wr’:(;id) writer
{Log(wr’) = (d,p)::Log(wr) ∧ENCrypted(id,wr,d,p,c)
∧CipherRange(id,r,c)}

val DEC: id:index → rd:(;id) reader → d:(;id) data → c: cipher →
o:(r:range {CipherRange(id,r,c)} ∗ p:(;id,Log(rd),d,r) stplain ∗

rd’:(;id) reader{Log(rd’) = (d,p)::Log(rd)}) option
{Auth(id) ⇒ (!rd’,r,p. o = Some(rd’,r,p) ⇔

(∃wr. ENCrypted(id,wr,d,p,c) ∧ Log(wr) = Log(rd)))}
It uses the same Safe and Auth predicates as LHAE.

Keys and sequence numbers for StAE are encapsulated into

linear writer and reader capabilities that hold the local state of

the encryption and (for specification purposes only) the log of

messages written or read so far. Encryption adds a log entry

into the writer, containing the plaintext and its additional data.

If a sequence of plaintexts was encrypted using StAE, then

decryption guarantees that the returned plaintexts arrive in the

right order (unless not(Auth(id))), since each plaintext must be

indexed by the preceding log.

In TLS, the additional data for StAE contains the proto-

col version and content type; StAE adds an 8-byte prefix

representing the sequence number to form the additional

data for LHAE. To program StAE using LHAE, we first

write an LHAEPlain module that implements I i
LHAEPlain

using I i
StPlain . Then, for instance, StAE.ENC simply adds a

sequence number then invokes LHAE.ENC. By typing (Lemma

StAE.tc7), we show that our StAE code meets its ideal in-

terface, assuming restricted users (using readers and writers

linearly) and given that LHAE meets its ideal interface.

Theorem 3 (Stateful AE): Let IiLHAEPlain and I i
LHAE be the

ideal plain interface and ideal interface of LHAE. Let IiStPlain

and I i
StAE be the ideal plain interface and ideal interface

of StAE. Let C = MAC · Encode · ENC · LHAE and S =
LHAEPlain · C · StAE.

If C is I i
LHAEPlain �I i

LHAE-secure for restricted users, then
S is I i

StPlain �I i
StAE-secure for restricted users.

Hence, we obtain security for TLS Record streams, under

the cryptographic assumptions discussed for LHAE.

V. THE HANDSHAKE PROTOCOL

This section discusses the ‘control’ part of our TLS API

for managing sessions and connections. Our implementation

delegates these tasks to a component that entirely hides the

Handshake protocol from the rest of our code. We verify it

against a typed interface I i
HS that specifies key-establishment,

and we independently verify the rest of TLS for any key-

establishment functionality that implements I i
HS . We discuss

the main features of the Handshake, but we refer to the online

materials for its 750-line F7 specification and the details of

the underlying cryptographic assumptions.

Ciphersuites The Handshake protocol depends on both the

TLS version and the prefix of the ciphersuite (before WITH).

It has two main mechanisms for establishing a shared pre-

master secret (PMS): (1) the client samples a fresh value and

encrypts it using the server public key; or (2) the client and

server exchange Diffie-Hellman exponentials gx, gy and use

their private exponents x and y to compute the value gxy .

Data Structures We give below the public datatypes of the

API that expose information about sessions and epochs to the

application. Our main integrity goal for the handshake is that

clients and servers agree on their content.

type SessionInfo = {
init crand: random;
init srand: random
version: version;
cipherSuite: cipherSuite;
compression: compression;
pms data: bytes;
clientID: cert list;
serverID: cert list;
sessionID: sessionID}

type Role = Client | Server
type ConnectionInfo = {

role: Role; id rand: random;
id in: epoch;
id out: epoch}

type epoch =
| Init of Role
| Next of random ∗ random

∗ SessionInfo
∗ epoch

SessionInfo records information for a given session: the initial

client and server random values (used in the full handshake

that generated the session); the protocol version, ciphersuite,

and compression algorithm; the exchanged data for the PMS;

the certificates used for authenticating each role, if any; and the

session identifier (used for resumption). ConnectionInfo holds

the current epochs, for reading and writing, the local role,

and the local random value, to guarantee that ConnectionInfos

are pairwise distinct. Each epoch is unidirectional and initially

records just the role of the writer (Client or Server); for each

complete handshake, it also records the SessionInfo and client

and server randoms used for key derivation.

Long-term Key Interface The handshake makes use of long-

term keys, which may be either honestly generated and used,

or compromised. The certification of long-term keys is outside

the TLS standard, but is crucial for modeling its security. For

this reason, we implement basic certificate management in the

Cert module, but we leave the interpretation of certificates

to the TLS application. From the protocol viewpoint, we

only require a function (certkey) to extract public keys from

exchanged certificate chains, and a predicate (Honest) to

specify which of the long-term keys used by TLS are honest.

Control Interface We now outline the handshake interface.

There is one instance of the Handshake protocol at each TCP

connection, each able to perform a sequence of handshakes

for that connection. At each end of the connection, the local

state has an abstract type (;ci)state indexed by the current

connectionInfo ci. We require that connection states be treated

linearly: each call to the interface takes the current state and

returns the next state.
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The interface first provides functions to create new instances

of the protocol, as client or server, possibly resuming existing

sessions, and to initiate re-handshakes on established connec-

tions (see Fig. 4 for their counterparts in the main TLS API):

accept creates a server instance (possibly resuming an existing

session, at the client’s initiative); connect creates a client

instance (with a fresh session); resume creates a client instance

from some existing session. For all of these functions, an

event Config(ci,c) records the configuration chosen by the user.

With request the server asks the client to start a renegotiation;

rehandshake or rekey let the client start a renegotiation, using

a full or abbreviated handshake (with the same ciphersuite).

Network Interface Once configured and started, the hand-

shake progresses by sending and receiving fragments of con-

tent types Handshake and CCS. The handshake updates its

internal state and notifies progress gradually, first by delivering

the new index and cryptographic materials, independently

for each direction (using event SentCCS(id) for each epoch)

then, after both (1) accepting the correct Finished message

from its peer and (2) sending its own Finished message, by

confirming that the handshake is complete (using predicate

Complete(ci,cfg) for the full ConnectionInfo) and thus that the

new keys can be used to send and receive application data. In

TLS, whether (1) or (2) above happens first depends both on

the role and whether we are resuming a prior session or not.

The Complete predicate in the postcondition of connection

establishment (see Handshaken in Fig. 4) states that the

incoming and outgoing epochs in the new ConnectionInfo are

synchronized, and relates their common SessionInfo (written si
for SI(ci.id out) below) to the local and remote configurations.

Provided that (1) both the ciphersuite and all its algorithms in

si are strong (predicate StrongHS(si), explained shortly); and

(2) the long-term keys recorded in si are honest (predicate

Honest), then we have that (a) the negotiated content of the

session si is compatible with the two initial configurations;

(b) the peer sent a CCS with a matching epoch (event

SentCCS(ci.id in)); and (c) the handshake was actually secure

(predicate SafeHS(si)), thereby enabling secure transport.

By definition, for connections with an anonymous client,

the server obtains no such guarantees, but the connection may

still provide server authentication, and then be used to run

application-level client authentication—see §VI-D.

Handshake Security We define security for the ideal hand-

shake interface I i
HS used in our verification, and parameterized

by I i
StAE, the ideal interface for StAE in §IV that defines the

type of keys established by the handshake.

Definition 5: A module HS is a secure handshake when it

is I i
StAE�I i

HS-secure for restricted users.

The StAE keys have abstract types, so the module HS in the

definition can obtain them only by calling GEN and COERCE,

and it can turn bytes into key materials using the latter only

for epochs id such that not(Auth(id)), the pre-condition of

COERCE. Thus, Definition 5 entails that, whenever Auth (and

a fortiori Safe) holds, a secure handshake establishes ideal,

fresh random key materials (as created by GEN).

More precisely, I i
HS uses a predicate SafeHS on SessionInfo

to indicate the secure runs of the handshake, such that Auth(id)

implies SafeHS(SI(id)). To type the handshake, we let SafeHS
(si) �

= StrongHS(si) ∧HonestPMS(si) where HonestPMS(si)
means that the pre master secret was securely generated

between compliant endpoints using honest long-term keys, and

where StrongHS(si) collects our cryptographic assumptions on

the algorithms selected by the protocol version and ciphersuite

indicated in the SessionInfo si. For the handshake, these

algorithms are provided by the modules Sig implementing all

signatures used by TLS, RSA and DH implementing the two

sub-protocols for exchanging the PMS, CRE a computational

randomness extractor for deriving master secrets, and PRF
implementing pseudo-random functions for deriving keys and

authenticating finish messages.

We obtain the security of the pre-master secret exchange

by making strong cryptographic assumptions (RSA-PMS) and

(DH-PMS) on the combined modules CRE·RSA and CRE·DE.

These assumptions are similar to the tagged key-encapsulation
security of [34] and the PRF-ODH assumption of [33] respec-

tively (see the full paper for details). Thus we define

StrongHS(si) �
= StrongSig(si) ∧ StrongCRE(si) ∧ StrongPRF(si) ∧

(StrongRSAPMS(si) ∨ StrongDHPMS(si))

For example, if the ciphersuite of si matches TLS_DHE_
DSS_WITH_*, StrongHS(si) holds if the signature scheme

DSS is INT-CMA secure [31], CRE and DH are jointly DH-
PMS secure, CRE is a computationally strong randomness

extractor [26], and PRF is a pseudo-random function, and

similarly for RSA-based ciphersuites.

Theorem 4 (Handshake): If Nonce is I i
Nonce-secure, Sig is

I i
Sig-secure, CRE is I i

PRF �I i
CRE-secure, PRF is I i

StAE �I i
PRF-

secure, and we have
(RSA-PMS) RSAKey ·CRE · RSA ≈ε RSAKey ·CRE · RSAi,
(DH-PMS) DHGroup · CRE · DH ≈ε DHGroup · CRE · DHi,
then HS �

= Nonce · Sig ·RSAKey ·Cert ·PRF ·DHGroup ·CRE ·
RSA · DH · TLSExt · Handshake is I i

StAE�I i
HS secure.

Intuitively, the theorem states that HS is secure provided

its cryptographic building blocks are INT-CMA, CRE, PRF,

RSA-PMS, and DH-PMS secure for all strong handshake

ciphersuites.

Proof outline To be able to complete the proof of Theorem 4

by typing, we replace each concrete implementations of the

underlying cryptographic modules by their typed, ideal coun-

terparts. The order of idealizations in our proof corresponds

to the sequence of games in ordinary security proofs which

for the ciphersuites TLS_DHE_DSS_WITH_* is very close

to Jager et al. [33]. Their proof only considers a particular

ciphersuite in isolation and only for the initial handshake; the

proof for our implementation requires more work to handle full

and abbreviated handshakes and re-handshakes with different

key exchange methods, and thus heavily relies on automation,

e.g., because of the potential for cross-protocol attacks [46].

After idealization, we apply typing Lemmas to verify by

typing that the idealized handshake meets I i
HS. The Handshake

module itself, the largest and most complex in our codebase,
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type (;id:epoch) stream
type (;id:epoch, h:(;id)stream, r:range) data
val data:

id:epoch{not(Auth(id))} → s:(;id) stream → r:range →
b:(;r) rbytes → c: (;id,s,r) data

val repr:
id:epoch{not(Safe(id))} → s:(;id) stream → r:range →
c: (;id,s,r) data → (;r) rbytes

val split: id:epoch → s:(;id) stream →
r0:range → r1:range → d:(;id,s,Sum(r0,r1)) data →
d0:(;id,s,r0) data ∗ d1:(;id,ExtendStream(id,s,r0,d0),r1) data

Figure 3. DataStream interface towards TLS (excerpt).

implements the handshake internal state machine, but does not

implement cryptography. It is verified by typing using the ideal

interfaces of the cryptographic modules (Lemma Handshake
.tc7). For this task, we carefully specify the content of the

message log eventually verified in the Finished messages,

and we rely on the safe renegotiation extension to provide

authentication of the whole chain of epochs extended by each

successive handshake on the connection.

VI. MAIN API & THEOREMS FOR TLS

We are now ready to explain our ideal interface for TLS

and give our main theorems.

A. TLS API

The main API depends on two predicates on epochs, logi-

cally derived from those defined in §IV and §V:

• Auth(id), defined as SafeHS(SI(id))∧ StrongAuth(id), indi-

cates that data exchanged over a connection with epoch

id is expected to be authentic in an ideal TLS implemen-

tation. Our types prevent the forgery of such data.

• Safe(id), defined as SafeHS(SI(id))∧ Strong(id), indicates

that data exchanged over id is expected to be both

authentic and secret in an ideal implementation. Our types

prevent all access to such data outside the application.

Both these predicates rely on the honesty of the pre master

secret, and hence of the long-term keys used in id. For

simplicity, our API does not enable the compromise of StAE

keys once they have been safely generated by the handshake.

However, since these keys are also typed using interfaces

with LEAK functions (see §IV), it would be straightforward

to formally supplement our APIs with explicit functions that

let the adversary generate corrupt keys. Similarly, we do not

currently model forward secrecy, which can in any case only

be achieved for ephemeral Diffie-Hellman ciphersuites.

DataStream The API is parameterized by an application-

level plaintext module DataStream. Fig. 3 provides its main

interface towards TLS. (It may export a richer interface to

other application-level modules.) The indexed abstract type

data represents messages exchanged over TLS connections;

stream is the type of specification-level sequences of data

fragments, used to index the messages sent (or received) at a

particular position in the data stream. DataStream may define

data concretely e.g. as bytes, and stream as a list of bytes.

To send the next message over an established connection

indexed by id, after sending the stream s, the application may

provide any value of type (;id,s,rg)data. As explained in §IV,

data is also indexed by a range rg, so that the application may

shape the traffic by hiding secret data lengths within a given

public range. Both data and stream are abstract types indexed

precisely by positions and epochs, thus only the application

may access raw data or move data between positions and

epochs. The DataStream interface exports three functions to

TLS. The functions data and repr let TLS read the concrete

binary representation of application data at un-Safe indexes,

and forge application data at un-Auth indexes. In addition, the

split function enables TLS to fragment data without looking at

its contents, by providing two sub-ranges r0 and r1 that add

up to the index range r; the function returns two data values

that logically come one after the other in their data stream.

Main TLS Interface Fig. 4 outlines our main F7 interface,

omitting most refinements for simplicity. The API provides

abstract TLS connections using two main types: indexes

(ConnectionInfo, written CI for brevity) and states (Cn). An

index is an immutable data structure detailing connection

parameters (see §V). A state is an abstract type, representing a

handle c to a running client or server TLS connection; its index

is written CI(c). Initial states (Cn0) are returned by connect
or accept; they must then be used linearly; next states that

leave the index unchanged are written nextCn. The interface

provides two main functions to operate on TLS connections,

read and write, plus a series of functions to initiate them and

control their successive handshakes (explained in §V).

• read takes the current state and returns an ioresult i, with

different cases: Read(c,d) returns an updated connection

state c and some received data d; the index of d states

that it extends the input stream of the current epoch,

and a postcondition states that if Auth holds for this

epoch, then the peer has sent that data; similarly Fatal
and Close, report genuine alerts from the peer if Auth
holds; CertQuery notifies the application that the current

handshake requests some certificate authorization (either

by resuming the handshake with authorize or aborting it

with refuse); Handshaken signals the completion of the

current handshake; the application can then inspect the

new epoch before proceeding.

• write takes the current state and some data, and sim-

ilarly returns an ioresult o with different cases, e.g.,

WritePartial returns an updated state and the rest of the

message, after sending its first fragment; and MustRead
notifies the application that it should read until the

ongoing handshake completes before writing again.

For instance, a client application that implements data as

strings may interact with TLS with a (call −→ result) sequence

as follows (with an implicit state threaded through the calls):

connect t g; read −→ CertQuery(q); authorize q −→ Handshaken;

write 6..30 "Hello world\n" −→ WriteComplete;

read −→ Read(0..24,"404\n"); read −→ Close(t).

TLS does not guarantee synchronization between input

and output streams; for instance, the client may write three

messages d0, d1, d2 then read d′0, then initiate rekeying, while

456



type Cn
type (;g:config) Cn0 = c0:Cn{InitCn(g,c0)}
type (;c:Cn) nextCn = c’:Cn{NextCn(c,c’)}
type (;c:Cn) msg i = r:range ∗ (;CI(c).id in, Stream i(c), r) data
type (;c:Cn) msg o = r:range ∗ (;CI(c).id out, Stream o(c), r) data
type (;c:Cn) ioresult i =
| Read of c’:(;c) nextCn ∗ d:(;c) msg i
{Extend i(c,c’,d) ∧ (Auth(CI(c).id in) ⇒Write(CI(c).id in, Bytes i(c’))) }

| Close of TCP.Stream{Auth(CI(c).id in) ⇒Close(CI(c).id in, Bytes i(c))}
| Fatal of a:alertDescription
{Auth(CI(c).id in) ⇒Fatal(CI(c).id in,a,Bytes i(c))}

| CertQuery of c’:(;c) nextCn ∗ (;c’) query {Extend(c, c’)}
| Handshaken of c’:Cn {Complete(CI(c’),Cfg(c’)) ∧ ...}
| ...
val read : c:Cn → (;c) ioresult i

type (;c:Cn,d:(;c) msg o) ioresult o =
| WriteComplete of c’:(;c) nextCn {Extend o(c,c’,d)}
| WritePartial of c’:(;c) nextCn ∗ d’:(;c’) msg o
{ ∃d0. Extend o(c,c’,d0) ∧ Split o(c, d, d0, c’, d’) }

| WriteError of alertDescription option
| MustRead of c’:Cn {...}
val write: c:Cn → d:(;c) msg o → (;c,d) ioresult o

val connect: TCP.Stream → g:config → c0:(;g)Cn0{CI(c0).role = Client}
val accept: TCP.Stream → g:config → c0:(;g)Cn0{CI(c0).role = Server}
val shutdown: c:Cn → c’:Cn{...}
val rekey: c:Cn {CI(c).role=Client} → c’:(;c)nextCn{Extend(c,c’)}
val resume: TCP.Stream → g:config → sessionID → c0:(;g)Cn0{...}
val rehandshake: c:Cn {CI(c).role=Client} → c’:(;c)nextCn{...}
val request: c:Cn {CI(c).role=Server} → c’:(;c)nextCn{...}
val authorize: c:Cn → (;c) query → (;c) ioresult i
val refuse: c:Cn → (;c) query → unit

Figure 4. Main TLS interface (excerpt).

the server reads d0, write d′0 and d′1, then reads d1. On the

other hand, when notified of a Close or that a new handshake is

complete, our interface guarantees that all previous fragments

have been received; so, the client knows that d2 was received,

and the server knows that d′1 was received.

B. TLS Security

As usual with communications protocols, the adversary is

in full control of the network. This is modelled by a trivial

TCP implementation, written TCP below, that reads and writes

into buffers shared with the adversary. The application and its

adversary may repeatedly set the input buffer, call the TLS

interface, and read the output buffer, thereby scheduling any

number of parallel connections.

Our main theorem is stated for a class of adversaries

that range over restricted programs well-typed against the

TLS API. As illustrated below, such programs include TLS

applications composed with their own adversaries, and our

theorem enables the automated security verification of these

applications by typechecking. In addition, §VI-C gives a corol-

lary, stated more cryptographically as security for a class of

adversaries with oracle access to functions over plain datatypes

(bytes, pairs, and integers) rather than those of our API. Let

I i
DS be the dataStream interface (Fig. 3) and I i

TLS be our

main TLS interface (Fig. 4), including auxiliary interfaces

such as ICert to give the adversary control over long-term key

management.

Definition 6: A module C is TLS-secure when it is

(I i
DS, ITCP)�I i

TLS-secure for restricted users.

Intuitively, the definition means that TLS treats data sent

over connections with Safe indexes as if it were abstract—only

the application is able to create and read them. Moreover, the

whole streams are authenticated, interleaved with occurrences

of TLS events about the handshake and alerts.

Theorem 5 (TLS Security): For any StAE and HS that are
I i
StPlain �IiStAE-secure and I i

StAE �I i
HS-secure for restricted

users, the module StAEPlain · StAE · HS · TLS is TLS-secure.

Proof outline Recall the definition of Safe(id) as SafeHS(SI(
id))∧ Strong(id); thus indexes safe for HS and StAE are also

safe with regards to our TLS implementation. The main step

of the proof is by typechecking our implementation code,

that is, I i
DS � StPlain � I i

StPlain (Lemma StPlain.tc7) and

ITCP, I
i
DS, I

i
StAE, I

i
HS � TLS � I i

TLS (Lemmas Dispatch.tc7 and

TLS.tc7, where Dispatch.fs is an auxiliary module of TLS that

multiplexes between content types.).

We combine Theorems 3, 4, and 5 and summarize them in

cryptographic terms as follows: If the cryptographic building
blocks of TLS are IND-CPA, INT-CMA, SPRP, and PRF

secure for strong record cipher-suites and INT-CMA, CRE,
PRF, RSA-PMS, and DH-PMS secure for strong handshake
cipher-suites, then TLS is secure when used safely through our
API. As illustrated by our sample applications, the safe use of

our API can easily be controlled by typing.

C. Security for ‘untyped’ adversaries

Theorem 5 holds for any composition of applications and

their adversaries well-typed against our TLS API. To show

that the adversary power is not unduly constrained by typing,

we give another, simply-typed API that exports only functions

on basic types such as int and bytes and we typecheck its im-

plementation against the main typed API. Cryptographically,

this amounts to proving game-based security for adversaries

A with oracle access to the TLS API. We apply Theorem 5

to restricted TLS users (DSb,UTLS ·A) defined as follows:

• DSb is a fixed, typed implementation of DataStream that

defines data as an abstract type with oracle functions for

creating data from ranges rg and bytes v within that

range, and extracting bytes from data, and that, for Safe
indexes, passes to TLS either v (when b = 0) or a max-

sized array of zero bytes (when b = 1).

• UTLS is a fixed, typed implementation of our basic TLS

API IUTLS that maintains a private table from integers to

current states of TLS connections and that exports the

same functionalities as the TLS API with base types.

• A ranges over all p.p.t. programs such that we have

ITCP, IUTLS � A; although we still formally require that

A be typed, this does not restrict its power, inasmuch as

IUTLS only exports functions on plain data types.

We arrive at a usual cryptographic game (on a large amount

of code) in which (1) A needs to distinguish between real

encryptions and encryptions of zero; and (2) A attempts to

break application integrity.

Theorem 6 (Game-Based Security): Let T be TLS-secure.
For all p.p.t. adversaries A with access to the oracles defined
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by the challenger UTLS and TCP, we have (1) DS0 · TCP · T ·
UTLS·A ≈ε DS1·TCP·T·UTLS·A and (2) DS0·TCP·T·UTLS·A
is asymptotically safe.

D. Verified TLS Applications

Ad hoc client authentication Our first sample applica-

tion illustrates a typical pattern: an anonymous client and a

server establish a TLS connection, then proceed with client-

authentication at the application level, relying on shared secret

bytes, which may represent a username–password pair, a

token, or a secure cookie.

Our sample application security is that, whenever the client

sends the authenticator and whenever the server accepts an

authenticator as valid, (1) the client and server share a secure

session; and (2) the adversary gains no information about

the authenticator (hence the client identity). For simplicity, in

contrast with our general theorem, we use a strong ciphersuite,

a single honest server certificate, and a secure token repository

with tokens that fit in a single fragment, so we can specify our

application code as:

val client: url → username → token → c:Connection option
val server : unit → u:username ∗ c:Connection
{ ∃token. Valid(u,token) ∧ Login(CI(c).id in,u,token) } option

To model (1), the client assumes the event Login(CI(c).

id out,username, token) before sending out his token, and the

post-condition of server guarantees that the user is registered

and authenticated. Application-level authentication holds only

inasmuch as the adversary does not guess the authenticator,

with a probability that depends on its min-entropy. We capture

this assumption by coding an ideal token functionality that

guarantees that honestly generated and coerced (guessed)

authenticators never collide.

type token
val create : unit → tk:token{Honest(tk)}
val register : u:string → tk:token{Honest(tk)} → unit{Valid(u,tk)}
val verify : u:string → tk:token → b:bool{b ⇒Valid(u,tk)}
val coerce : bytes → tk:token{not(Honest(tk))}

We define a DataStream module that sends tokens (within

a given length range) as data at the beginning of the stream:

(;id,emptyStream,(minTkLen,maxTkLen)) data =
tk:token{∃u. Valid(u,tk) ⇒ Login(id,u,tk)}

so that type abstraction ensures both (1) and (2). F7 shows

that our DataStream and application code modules are well

typed, using the TLS API and the ideal token interface. This

suffices to show that our application is secure, except for the

(small) probability that an adversary guesses the authenticator,

and the negligible probability that an adversary can break

our TLS idealization. Using our length hiding TLS API for

authenticators enables us to get this simple guarantee; without

it traffic analysis might help guessing attacks, for example, if

the token were a compressed HTTP session cookie [24].

Secure RPC Our second application is an RPC library that

relies on TLS to exchange multiple requests and responses

after mutual authentication. By typechecking our code and

applying Theorem 5, we easily obtain secrecy, authenticity,

and correlation between requests and responses. The full

paper presents an RPC DataStream module that defines data
concretely as bytes, with a refinement that says that it must

be a fragment of either a serialized request or a serialized

response (to handle fragmentation if their size exceeds 16K).

By type abstraction, TLS guarantees that RPC will handle and

deliver message fragments in accordance with the DataStream
interface: messages will be kept secret and will arrive in the

right order with strong authentication.

VII. LIMITATIONS AND FUTURE WORK

We implemented, tested, and cryptographically verified a

reference implementation of TLS. By writing a few hundred

lines of F# and F7 code on top of our API, we also confirmed

that applications can rely on our theorems to prove end-to-end

security while ignoring the low-level details of the RFCs.

Still, our implementation and security theorems come with

caveats. We do not yet support some algorithms and cipher-

suites (e.g. ECDH, AES-GCM) and we still have to optimize

our code for performance (see §II-D). Its security also relies

on a large, unverified TCB: the F7 typechecker, the F# com-

piler, the .NET runtime, and the core cryptographic libraries.

Besides, we do not formally account for side channels attacks

based e.g. on timing, even though our implementation tries

to mitigate them; proving the absence of such attacks would

require specific tools (see e.g. [2]).

Our verification method enabled us to develop modular

security proofs for a 5KLOC program, based on precise

cryptographic assumptions on core primitives. Most proofs

are by automatic typechecking, but writing type annotations

requires attention and care, and the resulting interfaces amount

to 2.5KLOC. Some proofs also rely on usage restrictions (e.g.

Definition 4) that are not established by typing, but could be

verified using more advanced affine type systems [54]. We

focus on the standard model of cryptography, resulting in

rather strong assumptions for the Handshake, similar to those

of Jager et al. [33] for the DHE key exchange. Relaxing these

assumptions and developing concrete security bounds [8] for

our implementation is left as important future work.
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