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Université du Luxembourg
peter.ryan@uni.lu

Abstract—The balance between coercion-resistance, election
verifiability and usability remains unresolved in remote elec-
tronic voting despite significant research over the last few years.
We propose a change of perspective, replacing the requirement
of coercion-resistance with a new requirement of coercion-
evidence: there should be public evidence of the amount of
coercion that has taken place during a particular execution of
the voting system.

We provide a formal definition of coercion-evidence that
has two parts. Firstly, there should be a coercion-evidence test
that can be performed against the bulletin board to accurately
determine the degree of coercion that has taken place in any
given run. Secondly, we require coercer independence, that is
the ability of the voter to follow the protocol without being
detected by the coercer.

To show how coercion-evidence can be achieved, we propose
a new remote voting scheme, Caveat Coercitor, and we prove
that it satisfies coercion-evidence. Moreover, Caveat Coercitor
makes weaker trust assumptions than other remote voting
systems, such as JCJ/Civitas and Helios, and has better
usability properties.

Keywords-Coercion resistance; coercion evidence; electronic
voting; verifiable elections; security protocols; security models;
usability

I. INTRODUCTION

A. Background and motivation

Current research in electronic voting focuses on trying

to design usable voting systems that satisfy the properties

of coercion-resistance and verifiability. Coercion-resistance

is a fundamental, and strong, property of electronic voting

systems. It states that a voter should be able to cast his

vote as intended, even in presence of a coercer that may

try to force him to cast a different vote. On the other hand,

verifiability allows to verify that the outcome of the election

reflects correctly the voters choice. A voter can verify that

the ballot has been correctly recorded on the bulletin board,

and anyone can verify that the recorded ballots from eligible

voters are tallied correctly.

Especially in remote voting, coercion-resistance and veri-

fiability are extremely hard to achieve together and this leads

to schemes of questionable usability or to trust assumptions

that are difficult to meet in practice. Perhaps the system that

comes closest to satisfying both those properties in their

strongest form is JCJ/Civitas [16], [12]. However, it does so

at the cost of usability:

• the voters are required to run a multi-party protocol

with registrars in order to construct their credentials.

• to avoid coercion, the voters must be capable of creating

and passing off fake credentials and fake proofs.

• a trusted registrar and an untappable channel for that

registrar are necessary.

Another prominent system is Helios [2], [3], which is very

usable but is for low-coercion elections, and has only very

weak methods to resist coercion. For example, in some vari-

ants of Helios (and also in the Estonian system), only the last

vote counts. This is supposed to help a voter resist coercion

by re-voting. However, if the voting credentials have been

leaked, an attacker can always override a legitimate vote.

Moreover, in any E-voting system, there may be cases

where the voter is subject to silent coercion, which means

being coerced without noticing. This can happen when the

voting credentials are leaked for various reasons: dishonest

registrars, insecure communication channels, malware on

the voting machine. In that case, the voter can be subject

to an impersonation attack and the intended vote may be

replaced by a vote chosen by the attacker. This is a more

general form of coercion which is not addressed even in

a strong system like JCJ/Civitas, because there is no way

for the voter to find out that the voting credentials have

been compromised. Variations of JCJ/Civitas [11], [4] aim

to improve the usability of voter strategies for achieving

coercion-resistance, but they do not consider the problem of

silent coercion explicitly. In Helios as well, if the credentials

of a voter have been leaked, they can be used to cast a vote

on voter’s behalf.

B. Coercion-evidence

This paper takes as its starting point the observation

that it has been impossible to achieve all the requirements

simultaneously. Since result verifiability and usability may

be considered “non-negotiable”, we consider a setting in

which coercion-resistance may be relaxed. Nevertheless, to

defend against coercion (both explicit coercion and silent

coercion), we propose the property of coercion-evidence.

This means that unforgeable evidence about the degree of
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coercion that took place is included in the election output.

Authorities, observers and voters can examine this evidence

and use it to determine whether the election result carries a

mandate for the winning candidate. Thus, election authorities

can decide to consider the election as valid or not, leading

to disincentivisation of coercion.

In some situations, dishonest voters could try to disrupt

the election by faking being coerced. Since an individual

voter can only fake his or her own coercion, this strategy

would be effective only if the winning margin is low.

Although this doesn’t prevent coercion evidence, it could

lower the attractiveness of our system. We will discuss

practical mitigations as well as research perspectives to

address this challenge.

C. Caveat Coercitor

We propose Caveat Coercitor, an electronic voting scheme

intended to support remote (e.g. internet) voting and to be

practically deployable. By shifting away from the conven-

tional wisdom of coercion-resistance in favour of coercion-

evidence, it tries to find a “sweet spot” between security

and usability. Coercion-evidence also means that the system

disincentivises coercion. In Caveat Coercitor, the most the

coercer can achieve is to cancel a voter’s vote. This is rather

weaker than the usual notion of forced abstention, because

the number of such cancelled votes is revealed as part of the

election output. Since the election result will be considered

valid only if those cancelled votes would not have affected

it, this means that the coercer cannot significantly affect the

outcome of the election.

Caveat Coercitor borrows some ideas from JCJ/Civitas, in

particular the notion of private and public credentials, but at

the same time it is designed such that, unlike JCJ/Civitas:

• The generation of credentials does not have to be

distributed, making it simpler and more usable.

• The registration phase needs to be secured only with

“best effort” confidentiality of credentials. If this se-

curity is broken, coercion may be possible, but it will

be evident. Credentials can be sent by post, SMS or

email. Effort should be made to keep the credentials

confidential, but even if this does not succeed the core

property of coercion evidence is not broken.

• This property does not rely on trustworthiness of any

registrar, and does not require untappable channels

during registration. We require the channel to be re-
silient: voters will receive their credentials, perhaps

after multiple attempts.

• Voters can directly verify that their private credential

matches the public one on the bulletin board (voters can

be given the randoms used in the encryption). There is

no need for zero-knowledge proofs.

• The system does not require the use of fake creden-

tials. If a voter is coerced, he can give away his real

credential and vote normally. Coercion will be evident

in that case.

• The system addresses the problem of silent coercion. If

a voting credential has been leaked and misused by an

intruder, this will be evident to any external observer.

Our contributions. 1) We introduce the property of

coercion-evidence and we propose a general formal def-

inition (section III). 2) We propose a new remote voting

scheme, Caveat Coercitor, that achieves coercion-evidence

(section IV). 3) We weaken the trust assumptions for remote

electronic voting and we discuss how coercion-evidence

is useful in practice. We also hint how Caveat Coercitor

could be adapted to address the long-standing problem of

an untrusted voting device (section V). 4) We perform a

rigorous analysis of the fact that Caveat Coercitor satisfies

coercion-evidence (section VI).

II. CRYPTOGRAPHIC PRIMITIVES

We will rely on the following cryptographic primitives in

this paper:

Distributed El-Gamal [8]: We will consider the El-

Gamal encryption scheme, where the secret key can be

distributed (relying on e.g. [20]) among a set of trustees

T1, . . . , Tn. In that case, the private key is split as x =
x1 + . . .+ xn and each of Ti holds a secret share xi.

The El-Gamal encryption of a plaintext m with a public

key k and random r will be denoted in the following by

{m}rk, or simply by {m}k when r is not important or is

clear from the context. The private part of a public key k
will be denoted by priv(k). The decryption of a ciphertext

m with a private key x will be denoted by dec(m,x).
We consider an exponential version of El-Gamal where

ciphertexts can be homomorphically combined to compute

the addition of plaintexts: we have {m1}r1k ∗ {m2}r2k =
{m1 +m2}r1+r2

k .

Re-encryption and mix nets [10], [15]: Given a cipher-

text {m}rk constructed using the public key k any party can

compute another ciphertext {m}r+r′
k that encrypts the same

plaintext using the same key k, by using a new random r′.
We will denote the re-encryption of a ciphertext m with a

given random r′ by renc(m, r′).
A re-encryption mix net is a set of agents M that takes

as input a sequence of ciphertexts S = m1, . . . ,mk and

outputs a sequence of ciphertexts S ′ = m′
1, . . . ,m

′
k that is

a re-encryption mix of S. Specifically, S ′ is a formed by

re-encryption of elements in a permutation of S: there is

a permutation σ of {1, . . . , k} and a sequence of randoms

r1, . . . , rk such that m′
1 = renc(mσ(1), r1), . . . ,m

′
k =

renc(mσ(k), rk). Moreover, if at least one element of M
is not to be controlled by an adversary C, the permutation

σ remains secret to C.

Plaintext equivalence test [14]: Given two ciphertexts

{m1}r1k and respectively {m2}r2k , encrypted with the same

key k, whose plaintexts are m1 and respectively m2, a
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plaintext equivalence test (pet) allows the holders of the

decryption key to demonstrate that m1 = m2, without

revealing the decryption key or any information about m1

or m2. For two ciphertexts c1 and c2, we will denote by

pet(c1, c2) = ok iff the plaintext equivalence test holds for

c1 and c2. Key holders only provide pets as indicated by the

protocol.

Zero-knowledge proofs for verifiability: Decryption,

re-encryption mixnets and plaintext equivalence tests can

be accompanied by non-interactive zero-knowledge proofs

that attest of the fact that these operations have been

correctly performed, without revealing sensitive information

like the decryption key. Zero-knowledge proofs are crucial

in order to ensure universal verifiability of the election,

while preserving user privacy. We will see that they are

essential for coercion-evidence as well. We will denote by

petproof(c1, c2, res) a zero-knowledge proof that the result

of the plaintext equivalence test applied to c1 and c2 is res.

III. COERCION-EVIDENCE

In this section we do not fix the model that is used to

specify security protocols. The definition can be instantiated

in any computational or symbolic model. We assume that

the model defines the notion of a run and of a bulletin

board for an e-voting system. As usual, we assume that

there is an attacker (or coercer, intruder) that controls the

communication network. When a message is sent to the

environment, it is assumed to be in the control of the

attacker.

We assume that each eligible voter A has a unique voting

credential sA. There is a registration phase where the voters

can obtain their correct voting credentials. In other words,

we assume a registration protocol that ensures availability

and integrity of voting credentials. We do not assume that

this protocol ensures the secrecy of voting credentials. In

particular, the voting credentials of several voters may have

been leaked during registration.

The voting phase allows a voter with voting credentials

s and the intended vote v to execute a program V(s, v),
whose definition depends on the protocol. V(s, v) may

allow a voter to cast one or multiple ballots, abstain or

report coercion. We say that a voter A, with credential

sA and intended vote vA, follows the specification of the

protocol if its interaction with the protocol consists in

executing V(sA, vA).

Definition 1 (coerced, dishonest, free voters): Let τ be

a run of an electronic voting system and A be a voter with

credential sA who intends to vote vA. We say that the voter

A is:

• coerced (to vote for vC), if

– a ballot with credential sA and vote vC , with vC �=
vA, is present on the bulletin board in the voting

phase

– A follows the specification of the protocol

in the run τ .

• dishonest, if A does not follow the specification of the

protocol in the run τ .

• free, if A is not coerced in the run τ

From our definitions, it follows that honest voters always

cast a vote for their intended choice, and they do not cast a

vote for a different candidate. If a voter A is coerced (resp.

dishonest), we let sA ∈ δc(τ) (resp. sA ∈ δd(τ)) and we

will sometimes say that sA is a coerced (resp. dishonest)

credential. Thus,

• δc(τ) is the set of credentials for coerced voters.

• δd(τ) is the set of credentials for dishonest voters.

The number |δc(τ)| is called the degree of coercion in the

run τ .
A coerced voter is one whose credentials have been leaked

and misused by an intruder. This may have happened by

explicit coercion or by silent coercion. We assume that an

honest voter would nevertheless obtain the voting credentials

and cast a vote normally for the intended choice. We

consider voters to be coerced only if their credentials have

been used to cast a vote for a candidate that is different from

their intended choice.
A dishonest voter can misbehave in arbitrary ways, and

appear to be coerced even when he is not. It is also possible

that a voter did not follow the protocol due to a genuine

mistake, but for simplicity we will consider such voters

dishonest. Note that a free voter can also be dishonest.
We consider an equivalence relation on runs, called

indistinguishability, that models the inability of an observer

to tell the difference between two runs that differ on some

private data. For two runs τ and τ ′, we denote by τ ∼ τ ′

if they are in the indistinguishability relation (defined

in section VI). A run τ is by definition complete if its

corresponding bulletin board contains the outcome of the

election.

Definition 2 (coercion-evidence): An electronic voting

system EVS satisfies coercion-evidence if:

1) Coercion-evidence test: there exists a test ce( ) that

takes as input data on the bulletin board and outputs a

number such that, for every complete run τ of EVS ,

we have

|δc(τ)| ≤ ce(τ) ≤ |δc(τ)|+ |δd(τ)|
2) Coercer independence: Let A be a voter with creden-

tial sA who intends to vote for vA. Then, for every run

τ of EVS where

• the voter A follows the protocol by executing

V(sA, vA)
• for every candidate vi, there is a free honest

voter Ai that follows the protocol by executing

V(sAi
, vi)
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there exists a run τ ′, where A does not execute

V(sA, vA), such that τ ∼ τ ′.

The first part of coercion-evidence requires the existence

of a test that can be applied to data that is available on the

bulletin board in order to determine the degree of coercion

in a given run. Note however that we do not require the

test to return the exact degree of coercion, but allow for an

over-aproximation. Indeed, for an external party, there is no

way of telling the difference between a coerced voter and a

dishonest voter who simulates being coerced. That is why

we have to allow an upper bound of |δc(τ)|+ |δd(τ)|.
The second part of coercion-evidence requires that the

coercer can not make a distinction between a run τ where

the voter has followed the protocol normally and has cast

a vote for the desired candidate, in spite of being coerced,

and a run τ ′ where the voter has followed the coercer’s

instructions. We require that for each coerced voter there

exists a free honest voter, so that in each case there is at

least one vote for the coerced choice, otherwise the coercer

would trivially detect that the coerced voter did not obey the

instructions.

Note that our definition also counters vote buying and

achieves effective receipt-freeness. A receipt for a ballot with

valid credentials and a certain candidate, even if that ballot is

cast, is not useful to a coercer because it does not guarantee

that the vote will be counted.

One might imagine a system that allows voters to declare

that they are being coerced, perhaps with a tick-box on

the ballot form, or a separate channel by which to report

coercion later. This may work if a voter knows they are

being coerced. But such a system does not satisfy coercion-

evidence according to our definition, since our definition

requires evidence even in the case of silent coercion.

IV. CAVEAT COERCITOR

Caveat Coercitor is a variation of JCJ/Civitas[16], [12].

We first recall JCJ/Civitas and then describe how Caveat

Coercitor deviates from it.

A. Overview of JCJ/Civitas

JCJ/Civitas is designed around the notion of credentials

(with a private and a public part), that allow eligible voters

to authenticate their ballots. To allow coercion-resistance,

JCJ/Civitas distributes credential generation among a set of

parties called registrars. To resist coercion, the voter has the

ability to generate a fake credential and a fake proof, that

look as real to the coercer. To ensure this, it is assumed that

at least one of the registrars is not corrupted by the coercer

and that the voter can communicate with this registrar using

an untappable channel.

The participants of the protocol are

• the set of registrars R, whose role is to authenticate

eligible voters and help generate their credentials.

• the set of talliers T , whose role is to generate and

publish the public key of the election. Each of them

holds a secret share of the corresponding private key,

that will be used for distributed decryption and plaintext

equivalence tests.

• the set of eligible voters A1, . . . ,An.

• a re-encryption mix net M, whose role is to anonymize

the set of cast ballots before verification of their eligi-

bility and their decryption.

• the bulletin board B, whose role is to record the

manipulation of ballots at all stages of the election,

from their recording to their tallying. It also records

proofs of correct ballot handling submitted by R, T
and M, that can be checked by external auditors.

Trust assumptions. A coercer may control some of

A1, . . . ,An, some of R, some of T and some of M.

For a voter Ai to achieve coercion-resistance, at least one

Aj , j �= i, one of R, one of T , one of M and the

voting machines must be outside the control of the coercer.

Moreover, there must be an untappable channel from Ai to

the trusted registrar, so that the coercer can not get hold of

the real credential, and an anonymous channel for the voter

to submit the ballot. The voter must also trust the voting

machine to correctly construct the voting ballot and to verify

the zero-knowledge proofs provided by registrars.

A summary of the protocol is as follows:

Initialisation. The election starts with talliers T generat-

ing the public key pk of the election in a distributed manner,

such that no minority of talliers can recover the private

key priv(pk) [20] and the decryption is distributed [8]. The

public part of the key is published on the bulletin board.

Voting credentials. In order to cast their vote, every

eligible voter has a private credential. Private credentials will

be denoted by the letter s (decorated with various indices).

For a given private credential s, there exists a corresponding

public credential {s}rpk , which will be published on the

electoral roll. We will denote public credentials (and their

re-encryptions) by the letter S (decorated with indices).

Registration. By running a separate protocol with each

of the registrars, the voter A obtains a private share siA
of her voting credential. Let m = |R|. The private voting

credential of the voter is the sum of all private credential

shares, i.e. sA = s1A+ . . .+ smA , and the public credential is

the homomorphic combination of all public credential shares

registered on the electoral roll, i.e. {sA}rpk = {s1A}r1pk ∗ . . .∗
{smA}rmpk = {s1A + . . .+ smA}r1+...+rm

pk .

Validity of voter credentials. Each registrar also provides

the voter with a non-transferable proof Pcorr of the fact that

the public share {siA}ripk , that is published on the electoral

roll ER, correctly encodes the private part siA. The proof can

be verified on the voting machine of the voter.

Resisting coercion. The voter has the ability to construct

a fake credential by replacing the credential share siA of a
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trusted registrar with a fake credential share s′iA. The voter

also has the ability (with the help of the voting machine)

to construct a fake proof P ′
corr showing that {siA}ripk is an

encryption of s′iA.

Voting. The ballot ({sA}rspk , {v}rvpk , Psv, Pcorr), from the

voter A, contains the encryption of the private credential

sA (with the key pk and with a different random than in

the electoral roll) and the encryption of the intended vote

v (with the key pk ). To prevent the re-use of the same

credential by a party that does not hold the private part,

the ballot contains additionally a zero-knowledge proof Psv

of the fact that its creator knows both s and v. Additionally,

a zero-knowledge proof Pcorr proves that v is a valid vote,

according to the specification decided by election authorities.

The ballot ({sA}rspk , {v}rvpk , Psv, Pcorr) is constructed by the

voting machine and submitted to the bulletin board.

Verification of proofs and mixing. Before tabulation

starts, the zero-knowledge proofs Psv and Pcorr of cast ballots

are verified (e.g. by the talliers) and ballots with invalid

proofs are discarded. The valid ballots (without the proofs)

and the electoral roll are then sent to the re-encryption mix

net M for anonymization.

Tallying. Credentials from anonymized ballots are com-

pared, using plaintext equivalence tests, to credentials from

the anonymized electoral roll, to ensure that votes to be

counted are cast by eligible voters only. If multiple ballots

are submitted with the same credentials, only one copy is

kept according to a predefined policy, e.g. only the last

vote counts. Finally, the decided set of countable votes is

decrypted.

The re-encryption mix, the plaintext equivalence tests and

the decrypted votes are accompanied by zero-knowledge

proofs that ensure the operations have been correctly per-

formed.

B. Caveat Coercitor: registration, voting and mixing

Caveat Coercitor follows the same scheme as JCJ/Civitas

with the following differences.

Trust assumptions. We assume that one mix server in

M, one tallier in T and the voting machines are honest.

However, to achieve coercion-evidence, Caveat Coercitor

does not have to assume that any of the registrars are trusted,

and neither does it require any untappable channel between

voters and registrars. The registration channel is assumed

only to allow the voters to obtain their credentials, and it

may allow the coercer to read honest messages and inject

fake messages. We discuss our trust assumptions in more

detail in section V.

The initialisation phase and the structure of the voting

ballots are exactly the same as in JCJ/Civitas.

Registration. The voters can simply receive their private

credentials by email or by post. Their creation does not have

to be distributed.

Validity of voter credentials. Because the voter is not

required to keep the private credential secret at all cost, the

proofs that the public share {s}rpk of the credential is a

correct encryption of the private share s can be significantly

simplified. In fact, the voter can simply obtain from the

registrar the random number r that has been used in the

encryption algorithm. Then, the voter can use any device to

verify that the encryption has been correctly performed.

Resisting coercion. In Caveat Coercitor voters do not have

to “resist” coercion. To make coercion “evident” a voter does

not need to perform any additional task other than to cast a

vote for the desired candidate. He can give away the voting

credential to the coercer, if asked.

Voting. The construction of voting ballots is similar to

the one used in JCJ/Civitas. The fundamental difference is

in how Caveat Coercitor handles multiple ballots from the

same voter: a voter may submit multiple ballots, constructed

on possibly different voting devices, provided they are all

for the same candidate. At most one vote for one candidate

will be counted for each credential. Precisely one vote

will be counted if all the ballots for a given credential

contain a vote for the same candidate. No votes will be

counted for a credential if there are ballots for that credential

corresponding to at least two distinct candidates. Instead,

that credential will be detected by the coercion-evidence test.

Verification of proofs and mixing. The zero-knowledge

proofs of cast ballots are verified. Before mixing, the ballots

with invalid proofs are eliminated.

C. Caveat Coercitor: coercion-evidence and tallying

We have at this stage a set of anonymized ballots to

be tallied and an anonymized electoral roll. In addition to

eliminating ballots with fake credentials, now we need to

determine the coerced credentials, remove the corresponding

ballots from the ballots to be tallied and output evidence of

coercion.

Coercion-evidence. Let τ be a run of Caveat Coercitor

up to this phase. We let

• BBaer(τ) be the anonymized electoral roll with each

element of the form {s}rpk , for some private credential

s. {s}rpk are re-encryptions of public credentials and

we denote them by (decorations of) the letter S.

• BBcast(τ) be the set of cast ballots with valid zero-

knowledge proofs of correctness. Each element of

BBcast(τ) is of the form ({s}r1pk , {v}r1
′

pk , Psv, Pcorr), for

some private credential s and vote v. Encrypted votes

will be denoted by (decorations of) the letter V .

• BBtally(τ) be the set of anonymized ballots to be

authorized relying on BBaer(τ) and then tallied. Each

element of BBtally(τ) is of the form ({s}r2pk , {v}r2
′

pk ),
for some private credential s and vote v.

The talliers will execute an algorithm whose output can

be used by any external observer to determine the amount
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of coercion, while at the same time allowing coercer-

independence. Specifically, the talliers will compute the set

of credentials in BBaer(τ) for which there are at least two

ballots with two different votes in BBtally(τ), i.e. the set

BBce(τ) = {S ∈ BBaer(τ)| ∃(S1, V1), (S2, V2) ∈ BBtally(τ).
pet(S, S1) = pet(S, S2) = ok, pet(V1, V2) �= ok}

There is a simple way to compute BBce(τ), shown in

algorithm 1. The idea is to first group together all the

ballots that correspond to a given credential, relying on

plaintext equivalence tests, and then detect if among these

there are two ballots representing distinct votes. At the end

of algorithm 1, the set cecredcc (τ) should be equal to BBce(τ)
(we will prove this in section VI) and the zero-knowledge

proofs in cezkpcc (τ) should allow anyone to verify that the set

cecredcc (τ) has been correctly computed.

Algorithm 1 Coercion-evidence: algorithm that reveals too much

Input: BBaer(τ),BBtally(τ) (taken from the bulletin board)

Output: cecredcc (τ), cezkpcc (τ)
cecredcc (τ) := ∅; cezkpcc (τ) := ∅
for S ∈ BBaer(τ) do

BS := ∅ // BS is the set of ballots corresponding to S

for (S′, V ) ∈ BBtally(τ) do
if pet(S, S′) = ok then

BS := BS ∪ {(S′, V )}
cezkpcc (τ) := cezkpcc (τ) ∪ petproof(S, S′, yes)

for (S1, V1) ∈ BS , (S2, V2) ∈ BS do
if pet(V1, V2) �= ok then

cecredcc (τ) := cecredcc (τ) ∪ {S}
cezkpcc (τ) := cezkpcc (τ) ∪ petproof(V1, V2, no)

return cecredcc (τ), cezkpcc (τ) (to the bulletin board)

Now, the coercion-evidence test cecc(τ) in Caveat

Coercitor, described in Algorithm 2, consists in verifying

that cccredce (τ) has been correctly computed (basically, this

means verifying the zero-knowledge proofs for the plaintext

equivalence tests) and outputting |cccredce (τ)| as the observed

degree of coercion.

Algorithm 2 Coercion-evidence test

Input: cecredcc (τ), cezkpcc (τ) (taken from the bulletin board)

Output: cecc(τ)
for zkp ∈ cezkpcc (τ) do

if verify (zkp) �= ok then
fail

cecc(τ) := count(cecredcc (τ))
return cecc(τ) (to the bulletin board)

The algorithm 1 provides data for the coercion-evidence

test and allows coercer independence, but let us see at what

cost coercer independence is achieved. Indeed, note that the

number of ballots that correspond to every credential in

BBaer(τ) is revealed. Now, assume the following coercion

strategy: the coercer instructs the voter A to abstain and then

casts a very large number nA of ballots using sA. Therefore,

if the voter disobeyed and has cast a vote using sA, the

output of the algorithm 1 will allow the coercer to observe

that for some credential nA+1 ballots have been cast. Now,

to obtain coercer-independence, there should be some free

voter A′ that has cast nA ballots using s′A: the coercer will

see nA ballots for some credential, and will not be able to

tell whether that credential is sA or not.
Although in theory coercer independence can be achieved

in this way, the practical aspect of this approach is question-

able. Therefore, we propose another algorithm to compute

BBce(τ), which outputs less information about the set of

tallied ballots (Algorithm 3). Instead of computing the set

of all ballots that have been cast with every credential sA,

we carefully guide the computation to determine if there are

two distinct votes for sA. In particular, if there are multiple

ballots with credential sA for the same candidate, only one

of them will be determined. We do the minimal amount of

computations required to determine if a credential is coerced

or not, and then go to the next credential.
We assume there are l candidates and that a list

can1, . . . , canl of candidate names encrypted with pk has

been computed and passed through a mixnet. These en-

crypted candidate names are part of the input for Algorithm

3. The algorithm first groups the ballots according to the

candidate that they represent and then for every credential

it checks whether it belongs to at least two groups.
To achieve coercer independence for a voter A in the

context of Algorithm 3, all we need is the presence of a

free voter A′ that can either cast a normal vote or cancel

his ballots by casting two different votes: the coercer can

not tell the difference between the ballots of A and those

of A′. If the coercer has cast a large number of ballots nA
with sA and the voter A has cast a different vote with sA,

the free voter A′ just needs to cast a vote for the candidate

desired by the coercer: there is no way for the coercer to

detect that there are nA + 1 ballots with credential sA and

that they have been discarded as coercion-evidence.
Tallying. For a ciphertext c and a set of ciphertexts M ,

we will denote by c ∈pet M the fact ∃c′ ∈ M.pet(c, c′) =
ok. Let BBvalid(τ) = BBaer(τ) � BBce(τ) be the set of

anonymized credentials that are not coerced. Now, for every

(S, V ) ∈ BBtally(τ),

• either S ∈pet BBvalid(τ). In this case, since S /∈pet

BBce(τ), we are certain that all ballots that correspond

to S contain a vote for the same candidate. Only one

of them should be counted.

• or else S ∈pet BBce(τ). In this case, S corresponds to

a coerced credential and no ballot should be counted

for S.
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Algorithm 3 Coercion-evidence: algorithm that reveals enough

Input: BBaer(τ),BBtally(τ), can1 . . . canl
(taken from the bulletin board)

Output: cecredcc (τ), cezkpcc (τ)
cecredcc (τ) := ∅; cezkpcc (τ) := ∅
// Step 1: group ballots according to the vote that they encode

for i := 1 to l do
Bi := ∅
for (S, V ) ∈ BBtally(τ) do

if pet(cani, V ) = ok then
Bi := Bi ∪ {(S, V )}
cezkpcc (τ) := cezkpcc (τ) ∪ petproof(cani, V, yes)

// Step 2: for each S, check if it occurs in Bi,Bj , i �= j

for S ∈ BBaer(τ) (*) do
for i := 1 to l do

for (S1, V1) ∈ Bi do
if pet(S, S1) = ok then

cezkpcc (τ) := cezkpcc (τ) ∪ petproof(S, S1, yes)
for j := i+ 1 to l do

for (S2, V2) ∈ Bj do
if pet(S, S2) = ok then

cecredcc (τ) := cecredcc (τ) ∪ {S}
cezkpcc (τ) := cezkpcc (τ) ∪ petproof(S, S2, yes)
go to next credential in BBaer(τ) at (*)

return cecredcc (τ), cezkpcc (τ) (to the bulletin board)

• or else S /∈pet BBaer(τ). In this case, S corresponds to a

non-eligible credential and no ballot should be counted

for S

Therefore, we have the following simple algorithm for

tallying: for all credential S ∈ BBvalid(τ), find the first

ballot (S′, V ) ∈ BBtally(τ) such that pet(S, S′) = ok; then,

decrypt V .

V. COERCION-EVIDENCE IN CAVEAT COERCITOR

A. Trust assumptions.

We will show in section VI that coercion-evidence holds

in caveat coercitor under the following trust assumptions:

• The voting machines of coerced voters and of some

free voters are not compromised.

• The registration channel allows voters to obtain their

voting credentials, and voters verify them to ensure that

they are correct. In particular, this implies that voters

can cast a valid ballot for their intended choice.

• There is an anonymous channel that allow voters to cast

their vote as intended.

• There exists at least one honest mix server M
• There exists at least one honest tallier T
The trust assumptions about one honest mix server and

one honest tallier are standard and probably necessary in any

system based on mixnets and on public-key cryptography.

We explain later in this section how Caveat Coercitor may

be adapted to relax the first assumption about the trusted

voting machine.

A big novelty of our trust assumptions, in contrast with

Helios and JCJ/Civitas, is that voting credentials need to be

secured only with “best effort”. Thus, even if the voting

channel where the voter obtains his credential is com-

promised, or if the voter is coerced to reveal the private

credential, coercion-evidence still holds. (However, if the

security is insufficient, a lot of coercion will be detected.)

This also means we do not have to trust the registrars to

keep the credential secret. More generally, this addresses

the problem of silent coercion discussed in the introduction,

which is common to Helios, JCJ/Civitas and the Estonian

internet voting system.

Informally, coercion-evidence holds given these trust as-

sumptions because:

• The coerced voters follow the instruction to cast a vote

for their intended candidate. Since they have access to

a trusted voting device, this ensures that, for all coerced

voters, coercion-evidence is input in the system during

the voting phase. It will be detected later.

• Additionally, a trusted voting device means that the

coercer can not observe that a voter has cast a ballot,

and this is essential for coercer-independence.

• The voter verifies that his ballot has reached the

bulletin board and zero-knowledge proofs for mixnets

and plaintext equivalence tests are publicly checked.

This ensures that coercion-evidence that is input in

the system during the voting phase is not lost on

the way from the voters to the talliers. The role of

zero-knowledge proofs is also to ensure that coercion-

evidence in ballots to be tallied corresponds indeed to

ballots cast in the voting phase, and not introduced in

the system during mixing.

• Voters receive and verify that their credentials are valid.

This ensures that their ballots are not discarded before

the final tally, and will result either in a counted vote,

or in coercion-evidence.

• The honest mixer and the honest tallier will help in

achieving coercer-independence: the honest mixer will

ensure that the ballots cast by the coercer or the coerced

voter can not be tracked to determine how they have

been handled in the tallying phase; the honest tallier

ensures that the ballots are decrypted and plaintext

equivalence tests are performed only as specified by

the protocol.

B. Example.

Suppose that events unfold as depicted in Table I. Among

48M voters, about 44M voters submit ballots with vote

for only one candidate, while about 4.2M voters (or their

coercers) submit ballots containing votes for different can-

didates. Thus, most voters have not been coerced, and have

cast possibly multiple ballots for a single candidate. They
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No. of credentials %age of credentials

Total number of eligible
credentials

48,783,530 100%

Number of credentials that
have voted for a single
candidate

44,539,363 91.3%

Number of credentials that
have voted for at least two
candidates

4,244,167 8.7%

Table I
AN EXAMPLE DISTRIBUTION OF BALLOTS. A TABLE IN THIS FORMAT IS

OUTPUT BY THE SYSTEM AT THE END OF THE ELECTION.

account for 91.3% of voters. The rest 8.7% of voters have

cast ballots for different candidates. These may be voters

that have been forced to release their credentials, forced to

cast vote to a candidate but they also managed to cast vote

to their intended candidate or they may simply have decided

to submit two ballots for different candidates. So either

they were coerced or they did not follow the specifications

of the protocol and thus were dishonest. The ballots from

these 8.7% of voters will all be discarded and 91.3% of

the ballots are taken to determine the outcome. The system

counts one vote for the (single) candidate represented by

each of the set of ballots that corresponds to each credential.

The margins by which the winner beats the other candidates

can be considered in order to determine whether the election

result should carry.

To understand the reason for this way of counting, let us

distinguish the following two cases:

• If a credential has been used once or more times, but

each time to vote for the same candidate, a vote for that

candidate is counted. Indeed, there are three subcases:

– The voter has cast multiple ballots for the same

candidate;

– The attacker obtained voter’s credentials and has

cast a ballot for the same candidate as the voter;

or

– The voter knowingly abstained and the attacker

obtained her credentials and cast ballots for one

candidate.

The output of the system does not allow any voter,

coercer or observer to distinguish between these sub-

cases, but if the voter behaved correctly and cast a

ballot(the third case is eliminated), then his vote is

counted.

• If a credential has been used to cast votes for multiple

candidates, none of its votes is counted. The following

sub-cases are indistinguishable:

– The voter has cast multiple ballots for several

different candidates;

– The voter has cast multiple ballots for one candi-

date, the attacker obtained her credentials and has

cast a vote for a different candidate;

– The voter and the attacker each have cast votes for

several different candidates; or

– The voter knowingly abstained and the attacker

cast votes on her behalf for multiple different

candidates.

In each of these cases, either the voter is dishonest or the

voter is coerced. The corresponding votes are therefore not

counted and the evidence is recorded for the authorities to

make a decision.

C. Discussion

Disincentivisation of coercion: As demonstrated, a

coercer that wishes to achieve a particular outcome is faced

with a dilemma. Assuming the security of the cryptography,

and assuming that the voter is not dissuaded from casting

her own ballot by invalid threats, the best the coercer can do

is try to force a large number of annulled votes. However,

the number of annulled votes he forces will be detected

and announced, and an analysis will be performed to check

whether those votes will materially affect the outcome.

If not, the election will be considered a success and the

declared outcome will have been shown to be robust against

the degree of coercion attempted.

Since annulled votes in Caveat Coercitor are evident, they

do not have the power that forced abstentions have in other

systems. If the coercer has a strategy of annulling votes that

he believes would be votes for a particular candidate, it won’t

work, because the final results will be interpreted as meaning

‘there was a lot of coercion’ rather than ‘there were a lot of

abstentions’.

Disruption of the election: In the definition of coercion-

evidence, we have taken into account the fact that dishonest

voters may pretend to be coerced, and therefore the coercion-

evidence test may overestimate the actual degree of coercion.

In some situations, a set of dishonest voters could rely on this

in order to challenge the validity of the election. Especially

when the difference between the winner and the runner-up

of the election is small, a minority of voters would suffice

to cause a disruption.

To deter voters from disrupting the election in practice,

one option could be making voluntarily voting for two

different candidates an offence. Both technical and admin-

istrative measures should be carefully designed to find an

acceptable balance between discouraging dishonest behavior

and encouraging resistance to coercion.

Another option is to have a probabilistic interpretation

of coercion-evidence, depending on various data that can be

gathered about the election (voter intentions, audit logs, etc.).

This approach would allow to separate coercion-evidence

into different threads, one of which would be evidence of

actual coercion. More research on this idea is needed.

Individual and universal verifiability: Individuals can

verify that their ballot is present on the bulletin board,
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and will be counted. If the voter was coerced, their ballot

will be included in the coercion evidence test. Observers

can perform universal and eligibility verification, because

the computations of algorithm 3 are publicly verifiable.

Additionally, observers can verify the figures given in the

table.

Towards untrusted voting machines: Although in this

paper we assume for simplicity that a voter has access to a

trusted voting machine, Caveat Coercitor has the potential

to be adapted to provide coercion evidence in the context of

untrusted machines, and this is our main topic for future

research. We give some hints about directions here. For

instance, assume a voter has access to n voting devices and

the voter is unsure which one can be trusted for integrity.

That is not a problem for Caveat Coercitor: the instruction

for the voter is to simply cast his vote on any number of

available devices. As long as one out of n devices is not

integrity-compromised (the voter does not need to know

which one),

• either the vote will be counted for the preferred candi-

date;

• or coercion will be recorded.

This deals with integrity. For voting clients that are privacy-

corrupted, the situation is more difficult. A voter needs

to take whatever steps are necessary to prevent the client

communicating with the coercer. This may involve using the

client in a Faraday cage, and resetting it or even destroying

it afterwards, depending on the coercer’s power.

Systems like JCJ/Civitas and Helios are not as well

adapted to the untrusted client, because they are not designed

to be as tolerant of coercion as Caveat Coercer. Our system

allows coercion (but makes it evident).

VI. ANALYSIS

According to definition 2, we prove that the coercion-

evidence test of Caveat Coercitor is adequate (section VI-A)

and that Caveat Coercitor allows coercer independence

(section VI-B). We give proof sketches in this section and

complete proofs in the appendix.

A. Coercion-evidence test

If cecc(τ) is the result of applying the coercion-evidence

test in Caveat Coercitor for a run τ , we have to show that

|δc(τ)| ≤ cecc(τ) ≤ |δc(τ)|+ |δd(τ)|.
For a credential s and a vote v, we will denote by B(s, v)

the set of possible ballots (including the zero-knowledge

proofs) with credential s and vote v. Thus, B(s, v) is the set

of tuples of the form ({s}rpk , {v}r
′

pk , Psv, Pcorr), where r, r′

are random numbers and Psv, Pcorr are the corresponding

zero-knowledge proofs for this ballot. We denote by B0(s, v)
the set of possible ballots with credential s and vote v,

without the zero-knowledge proofs.

For a run τ of Caveat Coercitor, recall that BBcast(τ) is

the set of cast ballots with valid zero-knowledge proofs and

BBtally(τ) is the set of ballots to be tallied in the run τ . Let

us denote by E(τ) the set of private credentials for eligible

voters in a run τ . We define

Icast(τ) = {s | ∃v, v′.v �= v′,B(s, v) ∩ BBcast(τ) �= ∅
& B(s, v′) ∩ BBcast(τ) �= ∅}

Itally(τ) = {s | ∃v, v′.v �= v′,B0(s, v) ∩ BBtally(τ) �= ∅
& B0(s, v

′) ∩ BBtally(τ) �= ∅}
Fcast(τ) = {s | ∃v.B(s, v) ∩ BBcast(τ) �= ∅}� E(τ)
Ftally(τ) = {s | ∃v.B0(s, v) ∩ BBtally(τ) �= ∅}� E(τ)

In words, Icast(τ) and respectively Itally(τ) represent

the set of (inconsistent) credentials that have at least two

corresponding ballots on the bulletin board in the voting

phase and in the tallying phase respectively. The set Fcast(τ)
represents fake (i.e. invalid) credentials that have been used

to cast a vote, while the set Ftally(τ) is formed of fake

credentials that correspond to ballots that are to be tallied.

A first lemma shows that all the coerced credentials are

contained in the set I(τ) and that, additionally, the set I(τ)
may only contain fake or dishonest credentials:

Lemma 1: For all run τ of Caveat Coercitor, we have

δc(τ) ⊆ Icast(τ) ⊆ δc(τ) ∪ δd(τ) ∪ Fcast(τ)

The proof of the first inclusion relies on the definition

of coerced voters and on the trust assumption that the

coerced voters have access to an honest machine to cast

their vote. Thus, at least two different votes are present for

each coerced credential on the bulletin board: one coming

from the voter and another one coming from the coercer. The

second inclusion can be shown by a simple case analysis.

Secondly, we show that the set of fake credentials and

the set of inconsistent credentials can not be changed in the

mixnet.

Lemma 2: For all run τ of Caveat Coercitor in which

the mixnet proofs are valid, we have

Itally(τ) = Icast(τ) and Ftally(τ) = Fcast(τ)

The proof is an easy consequence of the fact that verifiable

mixnets can not modify the content of ballots. Another easy

observation is that the set BBce(τ), defined in section IV-C,

has the same cardinality as the set of inconsistent credentials

that are not fake:

Lemma 3: For all run τ of Caveat Coercitor, we have

|BBce(τ)| = |Itally(τ)� Ftally(τ)|

Finally, we show that the coercion-evidence test provided

by Caveat Coercitor captures exactly |BBce(τ)|, i.e. we show

that the Algorithm 3 from section IV-C is correct. Let

cecredcc (τ) be the set of credentials output by the Algorithm

3 for a run τ .

Lemma 4: For all run τ of Caveat Coercitor, we have

cecredcc (τ) = BBce(τ)
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To prove this lemma, we show that every credential in

BBce(τ) will be detected in the step 2 of the Algorithm 3

and added to the set ceτcc. Moreover, we observe that every

credential that has been used to cast a vote for a single

candidate will not be part of cecc(τ), and therefore cecc(τ) ⊆
BBce(τ).

Recall that, by definition, we have cecc(τ) = |cecredcc (τ)|.
Putting all the lemmas together, we obtain the first part

of coercion-evidence according to definition 2. Corollary 1

shows that the output of the coercion-evidence test in Caveat

Coercitor is a correct estimate of the degree of coercion in

any run, up to the number of dishonest voters:

Corollary 1: For all run τ of Caveat Coercitor, we have

|δc(τ)| ≤ cecc(τ) ≤ |δc(τ)|+ |δd(τ)|
Proof: From lemma 1 and lemma 2, we have δc(τ) ⊆

Icast(τ) and Icast(τ) = Itally(τ). Therefore, we deduce

δc(τ) ⊆ Itally(τ). By definition, all credentials in δc(τ) are

valid, i.e. δc(τ) ⊆ E(τ), and thus δc(τ) ∩ Ftally(τ) = ∅.

Hence, we obtain δc(τ) ⊆ Itally(τ)�Ftally(τ). Considering

the cardinality of these sets, we obtain |δc(τ)| ≤ |Itally(τ)�
Ftally(τ)| = |BBce(τ)| = |cecredcc (τ)| = cecc(τ), where we

have used lemma 3 for the first equality and lemma 4 for

the second equality. This way we get |δc(τ)| ≤ cecc(τ).
From lemma 1, we have Icast(τ) ⊆ δc(τ) ∪ δd(τ) ∪

Fcast(τ). Using lemma 2, we get Itally(τ) ⊆ δc(τ) ∪
δd(τ) ∪ Ftally(τ). Subtracting Ftally(τ) from both sides,

we have Itally(τ) � Ftally(τ) ⊆ δc(τ) ∪ δd(τ) � Ftally(τ).
Furthermore, by definition we have δc(τ) ∪ δd(τ) ⊆ E(τ)
and therefore δc(τ)∪δd(τ)�Ftally(τ) = δc(τ)∪δd(τ). Thus,

we have Itally(τ)�Ftally(τ) ⊆ δc(τ)∪δd(τ). Considering the

cardinality of these sets and applying lemma 3 and lemma 4,

we deduce cecc(τ) ≤ |δc(τ)|+ |δd(τ)| and we can conclude

the proof.

B. Coercer independence

Let A be a voter with credential sA who intends to vote

for vA. We have to show that, for every run τ of Caveat

Coercitor where

• the voter A follows the protocol by executing

V(sA, vA)
• for every candidate vi, there is a free honest voter Ai

that follows the protocol by executing V (sAi
, vi)

there exists a run τ ′, where A does not execute V(sA, vA),
such that τ ∼ τ ′.

First we show how τ ′ can be constructed given τ and then

we show that τ ∼ τ ′.
A run τ can be characterized by the sequence of messages

that have been sent over the network in τ . For every message

in a run τ , either the message is sent by the attacker (or

by a party under the control of the attacker), or else it is

sent by an honest agent, and all the attacker can do is to

learn that message. A run τ can be seen as a sequence of

(partial) runs τ = τ1 . . . τn. In Caveat Coercitor, we split a

run in a sequence corresponding to the phases of the system:

τ = τvote.τer.τmix.τtally, where τvote is the list of ballots with

valid zero-knowledge proofs that are cast on the bulletin

board in the voting phase, τer is the electoral roll, τmix is the

output of the re-encryption mix net and τtally is the output

that talliers compute in the tallying phase, which includes

data for the coercion-evidence test and the final outcome

Construction of the run τ ′. There are four possible cases

for the run τ :

• the coercer cast a vote with credential sA for a candi-

date vC , with vC �= vA
• the coercer did not cast a vote with credential sA
• the coercer cast a vote with credential sA for the

candidate vA
• the coercer cast at least two different votes with cre-

dential sA
For simplicity, we only consider the first case, which is

also the most likely. The other three cases can be handled in

a similar way. We sketch the main ideas of the construction

in the following and we give a complete description in the

appendix.

Assume the coercer has cast a ballot bsA,vC ∈ B(sA, vC).
By definition of the run τ , we know that the voter A has

cast a ballot bsA,vA ∈ B(sA, vA) and that there is a free

honest voter A′ that has cast a ballot bsA′ ,vC ∈ B(sA′ , vC).
Thus, the ballots corresponding to sA are canceled because

they are counted as coercion-evidence, while there is a vote

counted for vC that corresponds to sA′ .

On the other hand, a requirement of the definition is that

the voter A abstains from voting in the run τ ′. Therefore, a

vote for vC corresponding to sA is counted in the final tally.

In order to obtain τ ∼ τ ′, we need at least to have the same

outcome in the runs τ and τ ′. Hence, we need the free voter

A′ to cancel his vote in the run τ ′: we assume A′ casts a

ballot bsA′ ,vC ∈ B(sA′ , vC), as in the run τ , and in addition

a ballot bsA′ ,vA ∈ B(sA′ , vA). The rest of the cast ballots

in τ ′ are assumed to be exactly the same as in τ .

Thus, the amount of coercion-evidence and the final

outcome of τ ′ are exactly the same as in τ . What we need

in addition in order to achieve coercer independence is that:

• the coercer is not able to trace any of the cast ballots

and detect that they where handled as coercion evidence

• the coercer is not able to decrypt the ballots before they

are mixed

The first point is achieved by our trust assumptions that

the voter A can cast his ballot on an anonymous channel

and that at least one mix server is honest. The anonymous

channel ensures that the coercer can not distinguish the two

runs during the voting phase. Later, in the run τ ′, the honest

mix server will permute the ballots so that coercion-evidence

and the votes for vC show up in the same places as in τ .

The second point is achieved by out trust assumption that

at least one tallier is honest. Therefore, the ballots will be
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decrypted only as specified by the protocol, after the mixing

occurs.
In conclusion, if τ = τvote.τer.τmix.τtally, then we let τ ′ =

τ ′vote.τ
′
er.τ

′
mix.τ

′
tally, where

• τ ′vote is as τvote, with the difference that the voter A
abstains from voting and the free voter A′ cancels his

vote.

• τ ′er = τer
• τ ′mix is as τmix, with the difference that the honest

mixer swaps some ballots corresponding to sA with

some ballots corresponding to sA′ , and also swaps the

credentials of A and of A′ while anonymizing the

electoral roll.

• τ ′tally = τtally. This is possible because, by construction

of the runs τvote and τ ′vote, it is the case that they

determine the same outcome. Since there is one tallier

that is not under the control of the coercer, all the

coercer can do is to observe the final outcome computed

according to the specification of the protocol.

Indistinguishability of τ and τ ′. Although the actions

performed and observed by the coercer are the same in

τ and in τ ′, it may be the case that the coercer could

distinguish τ from τ ′ by performing various computations

on the messages that where sent in τ and τ ′: encryption,

re-encryption, checking zero-knowledge proofs, combining

messages, etc. In order to reason about the knowledge of the

attacker, we therefore need a formal model of messages and

of all possible computations that an attacker may perform.

We adopt a variant of the applied pi-calculus [1], used by

the protocol verifier ProVerif [6], [7].
We specify for ProVerif the messages that can be built

in Caveat Coercitor, the cryptographic primitives and the

possible actions of the attacker. Then, ProVerif allows us

to verify that all the pairs of runs of a bi-process are in

observational equivalence. Observational equivalence mod-

els the indistinguishability relation between runs that we are

interested in: τ ∼ τ ′ if and only if any computations applied

to τ and to τ ′ lead to the same observations. A bi-process is

a pair of applied pi-calculus processes (P, P ′), see e.g. [1],

that share the same structure and differ only on the messages

that they handle. A bi-process (P, P ′) generates pairs of runs

(τ, τ ′), where τ is a run of P , τ ′ is a run of P ′ and τ and

τ ′ have been generated by executing the same actions in P
and in P ′.

We observe that the runs τ and τ ′ constructed in section

VI-A are of the form τ = τ0.τtally and τ ′ = τ ′0.τtally, i.e.

the tally in the two runs is exactly the same. Therefore,

in order to show that τ ∼ τ ′, it is sufficient to show that

τ0 ∼ τ ′0, where τ0 = τvote.τer.τmix and τ ′0 = τ ′vote.τ
′
er.τ

′
mix.

Accordingly, we specify two process Pcc and P ′
cc such that

the bi-process (Pcc, P
′
cc) generates all the pairs of runs of

the form (τvote.τer.τmix) and (τ ′vote.τ
′
er.τ

′
mix) as constructed

in section VI-A. We show with ProVerif that observational

equivalence holds for the given bi-process (Pcc, P
′
cc) (the

ProVerif code is available online 1), and therefore we can

conclude the indistinguishability of any pair of runs (τ, τ ′):
Corollary 2: For any pair of runs (τ, τ ′) of Caveat Co-

ercitor constructed as described in section VI-A, we have

τ ∼ τ ′.
From corollary 1 and corollary 2, we can conclude:

Theorem 1: Caveat Coercitor satisfies coercion-evidence

under the trust assumptions from section V-A.

VII. RELATED WORK

Formal definitions: A formal definition of coercion-

resitance based on observational equivalence is proposed

in [13]. They prove that the Lee protocol [19] satisfies it.

Another definition based on observational equivalence is

proposed in [5], where an automated proof with ProVerif

has been carried out for JCJ/Civitas. A more detailed,

but not automated, analysis of JCJ/Civitas based on an

epistemic approach is performed in [18]. In a computational

model, coercion-resistance has been defined and proved for

JCJ/Civitas in [16], [12].

Caveat Coercitor can readily be compared with other

systems that allow Internet voting, such as JCJ/Civitas and

Helios.

JCJ/Civitas [16], [12]: The system makes a strong

assumption that there is an untappable channel for regis-

tration. It also assumes that the voter can run a multiparty

protocols and keep real credentials secret all the time. Under

these assumptions, it is strongly resistant to coercion, and is

fully verifiable by voters and observers. Several variants of

JCJ/Civitas improve the usability of the aspects related to

verifiability [9], [21] and coercion-resistance [11].

On the other hand, coercion-evidence in Caveat Coerci-

tor is not dependent on the secrecy of voting credentials,

leading to more realistic assumption about the distribution

of credentials. The registration phase, the voting phase and

the resistance to coercion become simpler and more usable.

Helios 2.0 [2], [3]: This system is designed for low-

coercion elections. It makes a few efforts to resist potential

coercion, for example by keeping secret from voters the

randoms in their ballots, but these efforts are easily defeated.

On the positive side, Helios 2.0 enjoys individual and

universal verifiability (but not eligibility verifiability). The

most interesting feature of Helios is its high usability, which

has been demonstrated by running large elections without

failure. Caveat Coercitor is designed to be as usable as

Helios (indeed, it can have the same front end and voter

experience). Moreover, Caveat Coercitor does not have the

restriction to low-coercion elections of Helios.

VIII. CONCLUSION

We propose coercion-evidence - a new property for e-

voting systems that can replace coercion-resistance and

1markryan.eu/research/caveat-coercitor/
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improve usability of electronic voting systems. Our formal

definition is general enough to permit the verification of

coercion-evidence in various systems and different security

models. We also propose Caveat Coercitor - a voting system

in which coercion is only weakly resisted, but made evident.

The ability of a coercer is limited, because the best the

coercer can achieve is the annulment of a voter’s vote. A

major feature of the system is that the degree of coercion

that actually took place is publicly verifiable, provided the

coerced voters follow the instructions of the protocol and

cast votes for their desired candidate. This means that the

coercer has only little incentive to coerce. Any observer can

check if the coercion (that is, the annulled votes) could have

made a material difference to the outcome.

To the best of our knowledge, our work is the first to pro-

pose a remote voting system with incoercibility properties

that does not rely on an untappable channel. It is also the

first paper to realise the importance of considering “silent”

coercion (coercion unknown to the voter being coerced, for

example by leaked credentials) together with coercion that

is known to the voter.

Future work: As already indicated, the idea of coercion

tolerance (with evidence) seems well-suited to addressing

the problem of how to vote on untrusted machines. We

speculated a bit about this in our discussion section, and

intend to work on it further. We would also like to de-

velop implementations, perhaps based on those of Helios

or JCJ/Civitas, and see how they work in practice. It would

also be interesting to explore how the concept of coercion

evidence could be applied in other contexts than E-voting.
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APPENDIX A.

PROOFS FOR SECTION VI-A

Lemma 1: For all run τ of Caveat Coercitor, we have

δc(τ) ⊆ Icast(τ) ⊆ δc(τ) ∪ δd(τ) ∪ Fcast(τ)

Proof: First we prove that δc(τ) ⊆ Icast(τ). Let

s ∈ δc(τ) be the credential of coerced voter A in a run τ . By

definition of coerced voters and since by our assumptions

A has access to a trusted voting device, there exist two

ballots in BBcast(τ) corresponding to s and two different

votes v, v′: B(s, v) ∩ BBcast(τ), B(s, v′) ∩ BBcast(τ) and

v �= v′. Therefore, we have s ∈ Icast(τ).
Let us now prove that Icast(τ) ⊆ δc(τ)∪δd(τ)∪Fcast(τ).

Let s ∈ Icast(τ) and assume that s /∈ Fcast(τ). We

show that s ∈ δc(τ) ∪ δd(τ). By definition of Icast(τ),
there exist v1, . . . , vn, such that n > 1, vi �= vj and

B(s, vi)∩BBcast(τ) �= ∅, for all 1 ≤ i, j ≤ n. By definition

of coerced and dishonest voters, we have

• if all ballots that are cast by A belong to B(s, vi), for a

unique i, 1 ≤ i ≤ n, then A is coerced and s ∈ δc(τ).
• otherwise, either A has cast two different votes or A

did not cast a vote, and we have s ∈ δd(τ).

Hence we can conclude that s ∈ δc(τ) ∪ δd(τ) ∪ Fcast(τ).

Lemma 2: For all run τ of Caveat Coercitor in which the

mixnet proofs are valid, we have

Itally(τ) = Icast(τ) and Ftally(τ) = Fcast(τ)

Proof:
From definitions, we observe that to conclude the lemma

it is sufficient to show that for all credential s and all vote

v, we have |B(s, v)∩BBcast(τ)| = |B0(s, v)∩BBtally(τ)|. In

words, this means that no ballots have been lost or added to

the tally during the mixing phase. This follows immediately

from the validity of mixnet proofs.

Lemma 3: For all run τ of Caveat Coercitor, we have

|BBce(τ)| = |Itally(τ)� Ftally(τ)|

Proof: Let BBpriv
ce (τ) be the set of private credentials

that corresponds to the public credentials in BBce(τ). We

note that |BBpriv
ce (τ)| = |BBce(τ)| and therefore it is

sufficient to show that BBpriv
ce (τ) = Itally(τ)� Ftally(τ).

We have s ∈ BBpriv
ce (τ) ⇔ ∃{s}rpk ∈ BBaer(τ)

and ({s}r1pk , V1), ({s}r2pk , V2) ∈ BBtally(τ) such that

pet(V1, V2) �= ok ⇔ s ∈ E(τ) and ∃v1 �= v2 such that

B0(s, v1) ∩ BBtally(τ) �= ∅ and B0(s, v2) ∩ BBtally(τ) �= ∅
⇔ s ∈ Itally(τ)� F(τ).

Lemma 4: For all run τ of Caveat Coercitor, we have

cecredcc (τ) = BBce(τ)

Proof: We prove first that BBce(τ) ⊆ cecredcc (τ). If S0 ∈
BBce(τ), then there exist (S0

1 , V
0
1 ), (S

0
2 , V

0
2 ) ∈ BBtally(τ)

such that pet(S0, S0
1) = pet(S0, S0

2) = ok, pet(V 0
1 , V

0
2 ) �=

ok. As pet(V 0
1 , V

0
2 )) �= ok there exist cani, canj with 1 ≤

i, j ≤ such that pet(cani, V
0
1 ) = ok and pet(canj , V

0
2 ) =

ok. After the Step 1 of the Algorithm 3, we have (S0
1 , V

0
1 ) ∈

Bi and (S0
2 , V

0
2 ) ∈ Bj . Without loss of generality, let us

suppose that i < j and that i, j are the smallest indices with

these properties.

Therefore, during the step 2 of the Algorithm 3, when S0

is considered for the role of S, (S0
1 ,V0

1 ) ∈ Bi and (S0
2 ,V0

2 ) ∈
Bj can be considered for the role of (S1, V1) and (S2, V2).
Thus, we have S ∈ cecredcc (τ).

To prove the inverse inclusion, consider S ∈ cccredce (τ).
This means there exist Bi,Bj such that there are (S1, V1) ∈
Bi, (S2, V2) ∈ Bj and pet(cani, V1) = ok, pet(canj , V2) =
ok and pet(S1, S) = ok = pet(S, S2). Therefore, we can

conclude S ∈ BBce(τ).

APPENDIX B.

PROOFS FOR SECTION VI-B

Construction of the run τ ′. The main idea in the

construction of τ ′ is to rely on the free voter A′ in the

voting phase so that the ballots of A′ in the run τ ′ look like

the ballots of A in the run τ , and the other way around.

Furthermore, we rely on an honest re-encryption mix server

to ensure that the coercer can not track the ballots back to A
or to A′. The honest mix server swaps the ballots of A and

A′ and also their credentials in the anonymized electoral

roll. An honest tabulation tallier ensures that the tallying

is performed according to the specification of the protocol,

both in τ and in τ ′.
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For a run τ = τvote.τer.τmix.τtally as the one in section

VI-B, we let τ ′ = τ ′vote.τer.τ ′mix.τ
′
tally, where τ ′vote, τ ′mix

and τ ′tally are defined in the following.

Voting phase. We have by definition at least three par-

ticular ballots present in τvote (recall that we consider the

case when the coercer has cast a vote for vC , vC �= vA,

using the credential sA): two with credential sA and one

with credential sA′ . Without loss of generality, we fix an

order for these three ballots on the bulletin board. Then, we

have:

τvote = L1.bsA,vC .L2.bsA,vA .L3.bsA′ ,vC .L4

where bsA,vC ∈ B(sA, vC), bsA,vA ∈ B(sA, vA),
bsA′ ,vC ∈ B(sA′ , vC) and L1,L2,L3,L4 are lists of ballots.

Furthermore, for any 1 ≤ � ≤ 4, if there is a ballot in Li that

corresponds to the credential sA′ , then the corresponding

vote is vC .

Let cA and respectively cA′ be the public credentials that

correspond to the private credentials sA and sA′ . Then,

without loss of generality, we can assume that the electoral

roll is

τer = S1.cA.S2.cA′ .S3

where S1, S2 and S3 are the public credentials of other

voters. Now, for some bsA′ ,vA ∈ BsA′ ,vA , let us consider

τ ′vote defined as follows

τ ′vote = L1.bsA,vC .L2.bsA′ ,vA .L3.bsA′ ,vC .L4

Hence, τ ′vote is the same as τvote, with the difference that

A now follows the instructions of the coercer and does not

cast a vote for the intended candidate, while the free voter

A′ becomes dishonest, and casts an additional ballot for the

candidate intended by A.

Mixing phase. According to our trust assumptions, there is

at least one mix server that is not controlled by the coercer.

Let τmix = τ0mix.τ
1
mix.τ

h
mix.τ

2
mix, where:

• τ0mix is the input to the mix network, i.e. τ0mix =
τ0vote.τer.τcand, where τ0vote contains the ballots from τvote,
but not their corresponding zero-knowledge proofs, and τcand
is a list of encrypted candidate names (to be used in the

coercion-evidence test, cf Algorithm 2).

• τ1mix is the output of (dishonest) mix servers that are present

in the mixnet before the honest mix server.

• τhmix is the output of the honest mix server.

• τ2mix is the output of (dishonest) mix servers that are present

in the mixnet after the honest mix server.

Now, we consider τ ′mix = τ ′0mix.τ
′1
mix.τ

′h
mix.τ

′2
mix, where:

• τ ′0mix = τ ′0vote.τ
′
er.τ

′
cand, where τ ′0vote contains the ballots

from τ ′vote, but not their corresponding zero-knowledge

proofs,, and τ ′er = τer, τ
′
cand = τcand.

• τ ′1mix is constructed from τ ′0mix by applying exactly the

same operations as for constructing τ1mix from τ0mix. This

possible because these operations consist only in perform-

ing re-encryptions and applying permutations to the set of

ballots: they do not depend on the content of ballots.

• τ ′hmix is constructed as follows. Recall that τ0mix =
τ0vote.τer.τcand, where τ0vote is τvote without the zero-

knowledge proofs of correctness, i.e. we have

τ0vote = L0
1.b

0
sA,vC .L

0
2.b

0
sA,vA .L

0
3.b

0
s′A,vC .L

0
4

where we denote by b0 (resp. L0) a ballot b (resp. a list

of ballots L) stripped of its proofs. Let τ ihmix be the input

for the honest mix server in τmix, i.e. the output of the

last dishonest server in τ1mix. Relying on the zero-knowledge

proofs that have to be provided by any mix server (including

the dishonest ones), we deduce that τ ihmix = ρ1.ρ2.ρ3 where

ρ1, ρ2 and respectively ρ3 are re-encryption mixes of τ0vote,
τer and respectively τcand, with some permutations chosen

by the coercer. Thus, we have

ρ1 = L1.w1.L2.w2.L3.w3.L4

ρ2 = S1.t1.S2.t2.S3

where w1.w2.w3 is a re-encryption mix of

b0sA,vC .b
0
sA,vA .b

0
s′A,vC and t1.t2 is a re-encryption mix

of cA.cA′ . Furthermore, τhmix = ρh1 .ρ
h
2 .ρ

h
3 , where, for every

1 ≤ i ≤ 3, ρhi is a re-encryption mix of ρi, with some

permutation chosen by the honest mix server. Let:

ρh1 = Lh
1 .w

h
1 .L

h
2 .w

h
2 .L

h
3 .w

h
3 .L

h
4

ρh2 = Sh
1 .t

h
1 .S

h
2 .t

h
2 .S

h
3

where wh
1 .w

h
2 .w

h
3 is a re-encryption mix of w1.w2.w3 and

th1 .t
h
2 is a re-encryption mix of t1.t2.

On the other hand, according to our construction of τ ′1mix,

the input to the honest mix server in τ ′mix is τ ′ihmix = ρ′1.ρ2.ρ3,

where

ρ′1 = L1.w
′
1.L2.w

′
2.L3.w

′
3.L4

and w′
1.w

′
2.w

′
3 is a re-encryption mix of

b0sA,vC .b
0
sA′ ,vA .b

0
sA′ ,vC such that, for every 1 ≤ i ≤ 3, if

w′
i ∈ B0(sA, vC) or w′

i ∈ B0(sA′ , vC), then w′
i = wi. Thus,

as in the case of the pair (τvote, τ
′
vote), the only difference

between τ ′ihmix and τ ihmix is that, for some 1 ≤ i ≤ 3, we

have w′
i ∈ B0(sA′ , vA) and wi ∈ B0(sA, vA).

In the run τ ′ the output of the honest mix server must

be τ ′hmix = ρ′1
h
.ρ′h2 .ρ

′h
3 , corresponding to re-encryption

mixes of ρ′1, ρ2 and ρ3. Relying on the fact that the mix

server producing τ ′hmix is honest, we can choose particular

permutations and particular randoms for the re-encryption

mixes that produce τ ′hmix. We choose these such that we

have the following:

ρ′h1 = Lh
1 .w

′h
1 .L

h
2 .w

′h
2 .L

h
3 .w

′h
3 .L

ρ′h2 = Sh
1 .t

′h
1 .S

h
2 .t

′h
2 .S

h
3

where w′h
1 .w

′h
2 .w

′h
3 is a re-encryption mix of w′

1.w
′
2.w

′
3 and

t′h1 .t
′h
2 is a re-encryption mix of t1.t2 such that:
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• w′h
i ∈ B0(sA′ , vC) ⇔ wh

i ∈ B0(sA, vC).
• w′h

i ∈ B0(sA′ , vA) ⇔ wh
i ∈ B0(sA, vA)

• w′h
i ∈ B0(sA, vC) ⇔ wh

i ∈ B0(sA′ , vC)
• pet(t′h1 , cA) = ok ⇔ pet(th1 , cA′) = ok
• pet(t′h2 , cA′) = ok ⇔ pet(th2 , cA) = ok

Intuitively, the two ballots from A′ and the ballot from A
are re-arranged in the run τ ′mix by the honest mix server so

that the plaintext equivalence tests performed for coercion-

evidence will succeed for the same positions in τ ′ as in τ ,

and also the vote for vC is revealed in the same position.

Furthermore, the credentials of A and A′ are swapped on

the electoral roll, so that the credential that is marked as

coerced is at the same position in both runs.

• τ ′2mix is constructed from τ ′hmix by performing exactly

the same operations as for constructing τ2mix from τmixh.

This is possible because the operations performed by a re-

encryption mix server do not depend on the content of

ballots.

Tallying phase. Let τ outmix and respectively τ ′outmix be the

outcome of the re-encryption mix net after the (partial) runs

τvote.τmix and τ ′vote.τ
′
mix. Note that τ outmix = τ outvote.τ

out
er .τ outcand and

τ ′outmix = τ ′outvote.τ
′out
er .τ ′outcand, where for all a ∈ {vote, er, out},

τ outa and respectively τ ′outa is a re-enncryption mix of τa and

respectively τ ′a. Furthermore, by construction we have:

• τ outcand = τ ′outcand

• τ outer = t1 . . . tn and τ ′outer = t′1 . . . t
′
n such that for every

1 ≤ i ≤ n, we have

– either t′i = ti
– or else pet(t′i, cA) = ok and pet(ti, cA′) = ok
– or else pet(t′i, cA) = ok and pet(ti, cA′) = ok

• τ outvote = w1 . . . wm and τ ′outvote = w′
1 . . . w

′
m such that for

every 1 ≤ i ≤ m, we have

– either w′
i = wi

– or else w′
i ∈ B0(sA′ , vC) and wi ∈ B0(sA, vC)

– or else w′
i ∈ B0(sA′ , vA) and wi ∈ B0(sA, vA)

– or else w′
i ∈ B0(sA, vC) and wi ∈ B0(sA′ , vC)

The trust assumptions for Caveat Coercitor ensure that

there is at least one honest tallier. The honest tallier will

follow the protocol and will not reveal his share of the

decryption key to the coercer. Therefore, the only way to

complete any run in the tallying phase for the coercer is

to obey the specification of the protocol. Thus, we have

τtally = τvalid.τbuckets.τ
1
c . . . τnc .τdec, where

• τvalid are the ballots from τ outvote with eligible credentials

• τbuckets is the outcome of plaintext equivalence tests that

are performed to group the ballots according to the vote

that they contain (step 1 of algorithm 2)

• for every 1 ≤ i ≤ n, τ ic represents the outcome of

plaintext equivalence tests performed to determine if the

voter with credential ti is coerced (step 2 of algorithm

2)

• τdec represents the result of decrypting ballots with

valid credentials whose corresponding voters have not

been coerced or dishonest.

Then, we let τ ′tally = τ ′valid.τ
′
buckets.τ

′1
c . . . τ

′n
c .τ

′
dec, where:

• because sA and sA′ are valid credentials by assumption,

we note that the set of ballots with ineligible credentials

is exactly the same in τ outvote and τ ′outvote. Therefore, if

τvalid = τ outvote�S, then we can choose τ ′valid = τ ′outvote�S.

• from our observation about (τ outvote, τ
′out
vote) and

(τ outer , τ ′outer ), it follows that the plaintext equivalence

tests from algorithm 2 and the decryption of the

final outcome give exactly the same results for

(τvalid, τ
out
er ) and (τ ′valid, τ ′

out
er ). Therefore, we can

choose τ ′buckets = τbuckets, τ
′i
c = τ ic , for all 1 ≤ i ≤ n,

and τ ′dec = τdec.

This way we finish the construction of τ ′.

Indistinguishability of τ and τ ′.
The ProVerif code available online at

markryan.eu/research/caveat-coercitor verifies the

observational equivalence of a bi-process (Pcc, P
′
cc),

which generates pairs of runs of the form (τ, τ ′), as

described in section VI-B. Pcc and P ′
cc share the same

structure and differ only on some (internal) messages. This

difference can be expressed in ProVerif with the construct

choice[u, v]: the process Pcc (also called the left process)

uses the term u, whereas the process P ′
cc (the right process)

uses the term v. To model the difference between the runs

τ and τ ′ from Caveat Coercitor all we need is to make sure

that the ballots that are cast are as expected. Then, ProVerif

explores all the possible runs starting from that.
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