
Anon-Pass: Practical Anonymous Subscriptions

Michael Z. Lee, Alan M. Dunn, Brent Waters, Emmett Witchel

The University of Texas at Austin

{mzlee, adunn, waters, witchel}@cs.utexas.edu

Jonathan Katz

University of Maryland

jkatz@cs.umd.edu

ABSTRACT

We present the design, security proof, and implementation

of an anonymous subscription service. Users register for the

service by providing some form of identity, which might or

might not be linked to a real-world identity such as a credit

card, a web login, or a public key. A user logs on to the system

by presenting a credential derived from information received

at registration. Each credential allows only a single login in

any authentication window, or epoch. Logins are anonymous

in the sense that the service cannot distinguish which user

is logging in any better than random guessing. This implies

unlinkability of a user across different logins.

We find that a central tension in an anonymous subscription

service is the service provider’s desire for a long epoch (to

reduce server-side computation) versus users’ desire for a short

epoch (so they can repeatedly “re-anonymize” their sessions).

We balance this tension by having short epochs, but adding an

efficient operation for clients who do not need unlinkability to

cheaply re-authenticate themselves for the next time period.

We measure performance of a research prototype of our pro-

tocol that allows an independent service to offer anonymous

access to existing services. We implement a music service, an

Android-based subway-pass application, and a web proxy, and

show that adding anonymity adds minimal client latency and

only requires 33 KB of server memory per active user.

I. INTRODUCTION

Today, widespread electronic-subscription services are used

to manage access to streaming music and video, journalistic

and academic articles, Internet hotspots, and public trans-

portation. In such systems there is a fundamental tension

between enforcing admission control and providing a user

with anonymity and privacy. Both of these goals are important.

Admission control can ensure that a service provider receives

adequate compensation and the system remains economically

viable. On the other hand, if a user’s behavior in a subscription

service is tracked, it creates a hoard of private information

ranging from the user’s personal tastes to geographic move-

ments, depending on the service.

Foregoing one of these two goals makes achieving the other

considerably easier. If we require a user to simply login to

an account, we can make sure that no user is simultaneously

logged in twice. On the other hand, if a subscription system

requires no logins then anyone can access it anonymously,

perhaps with the assistance of auxiliary tools such as a traffic-

anonymization system like Tor [14]. However, achieving both

admission control and anonymity together is difficult.

Ideally, we want an anonymous subscription system that

protects the interests of both the service and the users. This

problem was considered previously in the work of Damgård,

Dupont, and Pedersen [12], who showed what they called an

uncloneable identification scheme. At a high level, in their

system there is a registration phase in which a client chooses

a secret and the server “blindly” signs it using a two-party

protocol. During time period (or epoch) t, a client can then

login to the server using her acquired signature. The login

protocol is such that the server cannot distinguish which user

logged in (from all the registered users) nor link a user’s

login to any past logins. However, if a client attempts to

login twice with the same credentials during the same epoch,

the client will be detected and denied access. While the

protocols of Damgård et al. [12] were cryptographically heavy,

Camenisch et al. [4] gave asymptotic improvements resulted

in a more practical scheme. Neither protocol, however, was

implemented.

Our aim is to design and implement an anonymous sub-

scription system which is practical and deployable for existing

subscription services. We start by looking at the construction

of Camenisch et al. [4], which is in turn based on ideas from e-

cash [5]. In their system, the registration protocol involves the

server issuing the client a blind signature on a pseudorandom

function (PRF) key d. To login during epoch t, the server

and client run a two-party protocol in which the server learns

y = Yd(t) (where Y represents the PRF). In addition, the client

proves to the server (in zero knowledge) that y = Yd(t) for

some key d on which the client has a valid signature. If this

proof succeeds, the server checks a table it maintains for the

current time period. If y is not already in the table, it is simply

added and the login proceeds. However, if it already exists in

the table, then its presence is evidence that a login has already

occurred during that epoch for the same (unknown) registered

user and the login attempt is rejected.

Even though the system of Camenisch et al. is significantly

more efficient than that of Damgård et al. (Camenisch et

al. [4] show an order-of-magnitude reduction in the number

of modular exponentiations), it is not clear that their improve-

ments make the scheme practical. The computational cost of

a cryptographic login can still be a limiting factor in system

scalability, since it can limit the number of users that a service

can handle for a fixed set of computational resources, or impact

the battery life of a client on a mobile device. Indeed, even for

2013 IEEE Symposium on Security and Privacy

1081-6011/13 $26.00 © 2013 IEEE

DOI 10.1109/SP.2013.29

319

our scheme (which is more efficient than prior schemes), we

find that a login requires approximately 8 ms of computation

per core on a quad-core Intel 2.66 GHz Core 2 CPU (cf.

Table II in §VI-A). This machine can service at most 496

logins per second.

If a login is too costly for the service, then the service must

either buy more servers or increase the length of an epoch to

reduce the number of logins per fixed time period. Increasing

the length of an epoch negatively impacts usability, because

the length of an epoch is approximately how long a user

will have to wait if she wishes to unlink herself from past

activity. Consider a video streaming service where the time

epoch is 15 seconds. If a client wishes to load a new video

and dissociate herself from past videos watched, waiting up to

15 seconds will not be too noticeable relative to other delays.

However, a time epoch (and hence delay) of over a minute is

likely to be unacceptable to the user.

To put the epoch length and the maximum number of

logins per second in perspective, consider that users of the

Netflix streaming service watched 1 billion hours of content

in July 2012 [19]. With an epoch length of 1 minute, which

is still rather high, this leads to 60 billion authentications per

month, or 22,815 per second assuming that their distribution

is uniform over time.

We believe the central tension in an anonymous subscription

service is the service provider’s desire for a long time epoch (to

improve efficiency) versus the user’s desire for a short epoch

(to improve anonymity). Yet while users might occasionally

want a short time epoch so they can quickly “re-anonymize”

(e.g., when browsing through a collection of short videos), in

the typical case such re-anonymization may not be necessary

(e.g., if a user is watching a 90-minute movie straight through).

Our central insight is to balance the tension by providing short

epochs, giving users the ability to re-anonymize if they so

choose, while also providing an efficient method for clients

who do not need unlinkability to cheaply re-authenticate

themselves for the next epoch.

A. Our Contributions

We introduce a new primitive that we call an anonymous
subscription scheme with conditional linkage. Such a scheme

has registration and login operations as described above. In

addition, it offers a re-up operation that allows a client who

is logged in at (current) epoch t to authenticate itself (more

cheaply) for time period t + 1 with the tradeoff that the

server is able to link these sessions. In practice, we find

that allowing such an operation has a significant performance

benefit because re-up in our scheme is over eight times faster

than login.

Anon-Pass is designed for anonymous access to modern web

services like audio streaming, video streaming, and reading

articles. These services contain a large number of subscribers,

only a small portion of which are active at any particular

time. Users sign up for these services for a set amount of

time, but during that time they can expect to use the service

freely. The service provider cannot blacklist or deny service to

an individual user. Anon-Pass is designed so a given service

provider can provide anonymous access (perhaps as part of

a premium package), or a partner organization could sell

anonymous access to a range of subcontracted services.

We provide a formal definition of an anonymous sub-

scription scheme with conditional linkage along with a cryp-

tographic construction. We also provide a design and im-

plementation for Anon-Pass, a system that implements our

scheme. We demonstrate and evaluate Anon-Pass for scenarios

including a streaming music service, an anonymous unlimited-

use public transit pass, and a third-party authentication proxy.

We now briefly overview these contributions.

At an intuitive level we desire our anonymous subscription

system to have the following properties:

• Correctness. An honest service provider will accept any

well-formed login request from a client that is not logged

in, and any well-formed re-up request from a client that

is currently logged in.

• Unforgeability. An honest service provider will only

accept login or re-up requests that are derived from

secrets of registered clients.

• Sharing resistance (admission control). In a given

epoch, an honest service provider will allow at maximum

one client to receive service per registered client secret.

We refer to unforgeability and sharing resistance as soundness.

• Pseudonymity. Any service provider will not be able to

identify the client that originated a particular request. By

identify, we mean associate a request with the information

that the client submitted at registration.

• Unlinkability. The service provider cannot correlate a

user’s sessions (each session being a login and associated

re-ups) any better than guessing.

We refer to pseudonymity and unlinkability as anonymity.

In Section II we formalize the notion of an anonymous

subscription scheme with conditional linkage, and provide

formal security definitions for soundness and anonymity.

There are two main limitations to the anonymity guarantees

provided by our system. First, the exact probability with which

the server can “break anonymity” depends on various aspects

of the system outside our model. As an extreme case, for

example, if the service has only one registered user, then

the service provider knows who is logging in with perfect

accuracy. As a less obvious example: if all users are logged in

(and remain logged in), and one user logs out and then another

login occurs in the next time epoch, this new login must belong

to the user who logged out. Second, there might be other

ways – external to our system – in which a user’s anonymity

can be violated, e.g., by using network-traffic analysis or

by correlating a user’s observable behavior across sessions.

Our anonymous subscription service is only intended to not

“make the problem worse” by giving the server additional

means to discern user identities. We note that our system

could be coupled with other techniques (e.g., a network-

anonymity service like Tor [14], or a private information

retrieval scheme [11]) to anonymize other aspects of the user’s

interaction with the server.

320

Section III contains a description of our cryptographic

construction. We then present the design (§ IV) and implemen-

tation (§ V) of our system. The implementation (§ V) discusses

our usage scenarios: a streaming music service, an unlimited-

use public-transit pass, and a third-party authentication proxy.

Our evaluation (§ VI) shows that a single modern CPU can

support almost 500 logins per second, and 4,000 re-ups per

second. We demonstrate the practicality of our system by

showing that the performance overheads for our macrobench-

marks are reasonable, e.g., 33 KB in extra memory resources

per user and only a 11.8% increase in CPU utilization on the

application server while serving 12,000 clients. Finally, we

demonstrate the importance of re-ups for the music streaming

service: having re-ups available can decrease average CPU

utilization from 77.9% to 16.7% for the same number of user

requests.

We review other related work in Section VII.

II. ANONYMOUS SUBSCRIPTIONS WITH CONDITIONAL

LINKAGE

In this section, we formally define the pieces of our scheme

and the security properties that it provides. Note that the

re-up operation in our system is referred to in our formal

constructions as “linking.”

A. Syntax

We first define the syntax of an anonymous subscription
scheme with conditional linkage. Such a scheme consists of

the following algorithms:

• The setup algorithm Setup is run by the authorization

server S to initialize the system. It takes as input the

security parameter 1n and outputs a service public key

spk along with an associated service secret key ssk, and

the initial server local state σ.

• Client registration is done using two algorithms

RegC ,RegS run by a client and server, respectively. The

client takes as input the service public key, and the server

takes as input the service secret key. RegC outputs a client

secret key sk or an error symbol ⊥.

• The login protocol is defined via two algorithms

LoginC , LoginS run by a client and server, respectively.

The client takes as input a secret key sk, the service

public key spk, and the current epoch t; the server takes

as input the service secret key ssk, local state σ, a counter

cur, and the current epoch t. LoginS outputs updated

values σ′, cur′.
• The link protocol provides an alternative way for a

client who is logged in during epoch t to re-authenticate

for epoch t + 1. This protocol is defined by a pair of

algorithms Re-UpC ,Re-UpS run by the client and server,

respectively. The client takes as input a secret key sk, the

service public key spk, and the current epoch t; the server

takes as input the service secret key ssk, local state σ,

a counter next, and the current epoch t. Re-UpS outputs

updated values σ′, next′.

The registration, login, and link protocols may fail if the

client behaves incorrectly. For these protocols, the server

outputs an additional bit which is 1 if and only if the

protocol runs to completion, in which case we say the

protocol succeeds. We say the protocol fails otherwise.

• The end-of-epoch algorithm EndEpoch provides a way

for the server to end the current epoch, refresh its state,

and begin the next epoch. This algorithm takes as input

the current epoch t, local state σ, and counters cur, next;
it outputs updated values σ′, cur′, next′.

Intended usage and correctness. System initialization begins

by having the server run Setup(1n) to generate spk, ssk and

initial server state σ. The server also sets cur = next = t = 0.

Following setup, clients can register at any time; client i
refers to the ith client who registers, and we denote the secret

key of that client by ski. Independent of client registrations

(which do not affect the server’s state and may be performed

at any time), there is some sequence of executions of the

login, link, and end-of-epoch algorithms. In our formal model

(unlike the implementation), we assume none of these are

executed concurrently, and so there is a well-defined ordering

among those events. We denote the period of time between

two executions of EndEpoch (or between Setup and the

first execution of EndEpoch) as an epoch. We write Logini
(resp., Re-Upi) to denote an execution of Login (resp., Re-Up)

between the ith client and the server, with both parties using

their prescribed inputs.

At some instant in an epoch, we (recursively) define that

client i is logged in if either (1) Logini was previously run

during that epoch, or (2) at some point in the previous epoch,

client i was logged in and Re-Upi was run. At some instant

during an epoch, client i is linked if at some previous point

during that epoch client i was logged in and Re-Upi was run.

Correctness requires that when honest clients interact with

a server then, except with negligible probability, cur is always

equal to the number of clients who are logged in, and next is

always equal to the number of clients who are linked.

B. Security

We define two notions of security: one ensuring that ma-

licious clients cannot generate more active logins than the

number of times they have registered (“soundness”), and the

other (“anonymity”) guaranteeing anonymity and unlinkability

for clients who authenticate using the Login protocol. (On

the other hand, clients who re-authenticate using the Re-Up
protocol will be linked to their session in the previous epoch.)

1) Soundness: A scheme is sound if for all probabilistic

polynomial-time adversaries A, the probability that A suc-
ceeds in the following experiment is negligible:

1) Setup(1n) is run to generate keys spk, ssk, and an initial

state σ. Adversary A is given spk, and the experiment

sets cur = next = t = users = 0.

2) A may then do any of the following, where the server

uses its prescribed inputs (based on its current state):

321

• A can interact with an oracle for RegS . (This represents

a registration by a client whom A controls.) A need

not run the registration protocol honestly. Following

each such interaction, users is incremented.

• A can request that an honest client (one not controlled

by A) register. On the ith such request, the registration

protocol is run honestly (using the prescribed inputs)

and the resulting client key is denoted by ski. A cannot

observe1 the interaction between this client and the

server, and ski is not given to A.

• A can interact with an oracle for LoginS (resp.,

Re-UpS). This represents a login (resp., link) request

by a client controlled by A.

• A can request that client i Login (resp., Re-Up). In

response, the login (resp., link) protocol is run honestly

using ski (and the rest of the prescribed inputs). A
cannot observe2 this interaction.

• A can request to end the current epoch, in response

to which t is incremented and (σ′, cur′, next′) ←
EndEpoch(σ, cur, next) is executed.

In the above, we allow A only sequential access to its

oracles.

3) A succeeds if at any point cur is greater than users plus

the number of honest clients who are logged in.

2) Anonymity: A scheme is anonymous if for all prob-

abilistic polynomial-time adversaries A, the probability that

A succeeds in the following experiment is negligibly close

to 1/2:

1) A random bit c is chosen, and we set t = 0.

2) A outputs a service public key spk.

3) A runs two sequential interactions with RegC(spk). If

either of these results in output ⊥, then c′ = 0 is output

and the experiment ends. Otherwise, these interactions

result in two secret keys sk0, sk1.

4) A then runs in three phases. In the first phase, A may do

any of the following:

• Increment the epoch number t.
• Query oracle Login(·). On input a bit b, this begins

executing the client login protocol LoginC using inputs

skb, spk, and the current epoch number t.
• Query oracle Re-Up(·). On input a bit b, if client b

is not logged in, Re-Up(b) does nothing. Otherwise, it

begins executing the client link protocol Re-UpC using

inputs skb, spk, and the current epoch number t.

5) When the second phase begins, both clients must not be

logged in. Then A may:

• Increment the epoch number t.
• Query oracle ChallengeLogin(·). ChallengeLogin(b) re-

sponds as Login(b⊕ c) does.

• Query oracle ChallengeRe-Up(·). ChallengeRe-Up(b)

1We assume registration is done over a private, authenticated channel.
2We assume logins/links are done over a private channel. Note that there is

no client authentication when setting up this channel (since the client wishes
to remain anonymous); thus, we assume A only passively eavesdrops but does
not actively interfere.

responds as Re-Up(b⊕ c) does.

The second phase ends once an epoch begins in which

neither client is logged in.

6) In the third phase, A interacts as in the first phase.

7) A outputs a bit c′, and succeeds if c′ = c.

In all the above, A is again given only sequential access to its

oracles.

III. CONSTRUCTION

In this section we provide a construction for a secure

anonymous subscription scheme with conditional linkage. Our

construction uses a number of primitives – bilinear groups,

zero-knowledge proofs of knowledge, and a particular pseudo-

random function family – and cryptographic assumptions from

prior work. We provide relevant background in Appendix A.

Similar to [4], our construction works by associating a

unique token, Yd(t), with each client secret, d, in each epoch, t.
Registration works by allowing a client to obliviously obtain

a signature on a secret. To log in, a client sends a token and

proves in zero-knowledge that (1) it knows a server signature

on a secret, and (2) this secret corresponds to the token

that was sent. The tokens are used to determine admission

to the service; the server accepts a token only if it has not

been presented before in that epoch. Intuitively, soundness

follows from the difficulty of generating signatures; anonymity

follows from pseudorandomness of the tokens. (Formal proofs

of security can be found in the full version of this paper [18].)

On a technical level, we use the Dodis-Yampolskiy PRF [15]

and an adapted version of one of the signature schemes

proposed by Camenisch and Lysyanskaya [7] (CL signatures).

These building blocks are themselves efficient, and also enable

efficient zero-knowledge proofs as needed for our construction.

As noted above, a client can authenticate during epoch t by

sending the token Yd(t) and proving in zero-knowledge that

the token is “correct.” If a client is already logged in during

epoch t − 1, however, an alternative way of authenticating

is to send Yd(t) and prove that this token is “linked” to the

token Yd(t− 1) (which was already proven correct). This can

be done much more efficiently, with the tradeoff that the two

user sessions are now explicitly linked to each other. In an

epoch where the client is not logged in, it can perform a fresh

Login to “re-anonymize” itself.

A. Notation

Throughout, G = 〈g〉 is a bilinear group of prime order q,

with target group GT . e(·, ·) denotes the bilinear map, and we

let gT = e(g, g). We denote by a ← S the selection of an

element a uniformly at random from the set S.

We denote an interactive protocol executed by two proba-

bilistic algorithms A (with private input a) and B (with private

input b) by

(x, y)← 〈A(a), B(b)〉,

where x (resp., y) denotes the local output of A (resp., B).

322

We denote zero-knowledge proofs of knowledge where

a prover convinces a verifier of knowledge of values

(a1, . . . , an) that satisfy a predicate P by

PoK{(a1, . . . , an) | P (a1, . . . , an)}.
This notation is taken from Camenisch and Stadler [8] (mod-

ified to use PoK instead of PK).

B. Main construction

We assume zero-knowledge proofs of knowledge as building

blocks, and describe them in a separate section (§III-D). The

zero-knowledge proofs of knowledge presented there are non-

interactive proofs that are secure in the random oracle model.

In our security proofs, we assume the use of interactive

versions of these protocols that do not rely on the random

oracle model and can in turn be made zero knowledge using

standard execution of protocols, this implies sequential ex-

ecution of the zero-knowledge proofs. When the interactive

zero-knowledge proofs of knowledge are instantiated using

the Fiat-Shamir heuristic in the random oracle model, and

protocols may be executed concurrently, our proof breaks

down for technical reasons but we nevertheless view our proof

as heuristic evidence for the security of our implementation.

Setup: (spk, ssk,σ)← Setup
The server chooses x, y, z ← Zq and sets X = gx,

Y = gy , and Z = gz . The service public key is spk =
(q,G,GT , g,X, Y, Z), and the service secret key is ssk =
(x, y, z). The server state σ will be a pair of sets. They are

both initialized to be empty, i.e., σ = ({}, {}). We refer

to the first component as σ.cur and the second as σ.next.
Throughout, cur = |σ.cur| and next = |σ.next|.

Registration: (φ, sk)← 〈RegS(ssk),RegC(spk)〉
1) The client chooses d, r ← Zq . It constructs M = gdZr

and sends this to the server.

2) The client acts as prover and the server as verifier in the

zero-knowledge proof of knowledge

PoK{(d, r) |M = gdZr}.
If the proof fails, registration fails.

3) The server generates a ← Z
∗
q and sets A = ga. Then it

forms signature s = (A,B = Ay, ZB = Zay(= Bz), C =
AxMaxy) and returns it to the client.

4) The client verifies that it has received a legitimate signa-

ture by checking

A �= 1, e(g,B) = e(Y,A), e(g, ZB) = e(Z,B),

e(g, C) = e(X,A)e(X,B)de(X,ZB)
r.

Otherwise, RegC outputs ⊥.

5) The client sets sk = (s, d, r).

Login: ((σ′, cur′), φ)←
〈LoginS(ssk, σ, cur, t), LoginC(sk, spk, t)〉

1) The client uses its secret key (s = (A,B,ZB , C), d, r) to

create a blinded signature. The client chooses r1, r2 ← Z
∗
q

and creates blinded signature s̃ = (Ã, B̃, Z̃B , Ĉ), where

Ã = Ar1 , B̃ = Br1 , Z̃B = Zr1
B , and Ĉ = Cr1r2 .

2) The client creates login token Yd(t) = gT
1/(d+t).

3) The client submits s̃, Yd(t) to the server.

4) If Yd(t) ∈ σ.cur, login fails.

5) Otherwise, the server verifies that

Ã �= 1, e(g, B̃) = e(Y, Ã), and e(g, Z̃B) = e(Z, B̃).

If not, login fails.

6) The client and server each compute

v = e(g, Ĉ)

vx = e(X, Ã)

vxy = e(X, B̃)

v′xy = e(X, Z̃B)

7) The client acts as prover and the server as verifier in the

zero-knowledge proof of knowledge

PoK{(d, r, r′) | vr′ = vxv
d
xyv

′r
xy ∧ Yd(t) = gT

1/(d+t)}.
(The client uses r′ = 1

r2
.) If the proof fails, login fails.

8) The server sets σ′ = (σ.cur ∪ {Yd(t)}, σ.next).

Link: ((σ′, next′), φ)←
〈Re-UpS(ssk, σ,next, t),Re-UpC(sk, spk, t)〉

1) The client with sk = (s, d, r) submits Yd(t) =

g
1/(d+t)
T , Yd(t+ 1) = g

1/(d+(t+1))
T to the server.

2) The server checks that Yd(t) ∈ σ.cur and Yd(t + 1) �∈
σ.next. If not, linking fails.

3) The client acts as prover and the server as verifier in the

zero-knowledge proof of knowledge

PoK{d | Yd(t) = g
1/(d+t)
T ∧ Yd(t+ 1) = g

1/(d+(t+1))
T }.

If the proof fails, linking fails.

4) The server adds Yd(t+ 1) to σ.next.

End epoch: (σ′, cur′, next′)← EndEpoch(σ, cur, next)
σ′ = (σ.next, {}).

Proofs of the following can be found in the full version of

this paper [18].

Theorem (soundness): If the LRSW assumption holds in G,

the construction above is sound.

Theorem (anonymity): If the DDHI assumption holds in G,

the construction above is anonymous.

C. Efficiency improvements

Our protocol incorporates several efficiency improvements

over the base primitives that it uses:

Improved CL signatures: The base CL signature incorpo-

rates a fifth element: Az ≡ ZA in our notation, where A is

part of a client sk, and z ∈ ssk. ZA, and a blinded version

323

Z̃A that the client would need to send in proof of knowledge

of a signature, can be eliminated by restructuring checks of

signature validity. Instead of checking

e(Ã, Z) = e(g, Z̃A), e(Z̃A, Y) = e(g, Z̃B),

to prove that Z̃A and Z̃B are formed correctly, we eliminate

Z̃A and the former check, and for the latter, check

e(B̃, Z) = e(g, Z̃B)

to prove that Z̃B is formed correctly. Removing this element

eliminates two pairing operations – the check that this element

is properly formed – from server verification of logins. Pairing

operations dominate the computational cost of login, so this

change is significant. A login operation on the server consists

of 8 pairings and 6 exponentiations in GT . We measure that

a pairing operation takes an average of 1950 μs, while a GT

exponentiation takes 232 μs. (See §VI for a full description

of the settings used to acquire the timing of pairing and expo-

nentiation operations.) Thus, we expect this change improves

efficiency of login on the server by a factor of 1.2.

Simultaneous login and linking: Some of our applications

(§IV-E) involve linking for the next epoch immediately upon

logging in for the current epoch. We modify the protocol to

improve efficiency in this case. We are able to eliminate the

repeated computation of exponentiated Y (t) values that occur

for separate links: A login using Y (t) and sequence of links

Y (t) to Y (t+ 1), Y (t+ 1) to Y (t+ 2), . . . , Y (t+ (n− 1))
to Y (t + n) with separate login and link operations would

duplicate exponentiations of Y (t+1), . . . , Y (t+(n−1)). By

eliminating these repeated exponentiations, the time for two

link operations is reduced from 2566 μs to 1392 μs on the

client and from 1412 μs to 921 μs on the server. This is an

improvement of 1.8× and 1.5×, respectively. However, the

overall time is still dominated by the cost of login.

D. Zero-knowledge proofs of knowledge

We present non-interactive zero knowledge proofs of knowl-

edge that are secure in the random oracle model; these are the

protocols as implemented in Anon-Pass.

Registration PoK: PoK{(d, r) |M = gdZr}
Prover:

1) Choose rd, rr ← Zq , calculate R = grdZrr .

2) Set c = H(g, Z,M,R).
3) Send (R, ad = cd+ rd, ar = cr + rr) to the verifier.

Verifier:

1) Calculate c = H(g, Z,M,R).
2) Check that M cR = gadZar .

Login PoK: PoK{(d, r, r′) | vr′ = vxv
d
xyv

′r
xy ∧

Y (t) = gT
1/(d+t)}

We rewrite this as

PoK{(d, r, r′) | vr′ = vxv
d
xyv

′r
xy ∧ Y (t)d = gTY (t)−t}

Prover:

1) Choose rd, rr, rr′ ← Zq , and then compute R1 =
vrr′ vrdxyv

′rr
xy and R2 = Y (t)rd .

2) Set c = H(v, vx, vxy, v
′
xy, R1, gT , Y (t), R2).

3) Send (R1, ar′ = cr′ + rr′ , ad = −cd + rd, ar = −cr +
rr, R2) to the verifier.

Verifier:

1) Calculate c = H(v, vx, vxy, v
′
xy, R1, gT , Y (t), R2).

2) Check whether vcxR1 = var′ vxy
adv′xy

ar and

(gTY (t)−t)−cR2 = Y (t)ad .

Link PoK: PoK{d | Y (t) = g
1/(d+t)
T ∧
Y (t+ 1) = g

1/(d+(t+1))
T }

We rewrite this as

PoK{d | Y (t)d = gTY (t)−t∧Y (t+1)d = gTY (t+1)−(t+1)}
Prover:

1) Choose r ← Zq , set Rt = Y (t)r and Rt+1 = Y (t+ 1)r.

2) Set c = H(gT , Y (t), Y (t+ 1), Rt, Rt+1).
3) Send (a = cd+ r) to the verifier.

Verifier:

1) Calculate c = H(gT , Y (t), Y (t+ 1), Rt, Rt+1).
2) Check whether (gTY (t)−t)cRt = Y (t)a and (gTY (t +

1)−(t+1))cRt+1 = Y (t+ 1)a.

IV. DESIGN

This section describes the design of the Anon-Pass system.

The system is intended to instantiate our protocol in a way

that is practical for deployment. We present a conceptual

framework for the system in which the various functionalities

of the system are separated.

There are three major pieces of Anon-Pass functional-

ity: client authentication management, server authentication

management, and service provider admission control. In our

design, we call the these pieces the client user agent, the

authentication server, and the resource gateway. The client

user agent and the authentication server correspond to the

client and server in the cryptographic protocol. The resource

gateway enforces access to the underlying service, denying

service to users who are not properly authenticated. A session
in Anon-Pass is a sequence of epochs beginning when a user

logs in and ending when the user stops re-upping.

Figure 1 shows the major components of the Anon-Pass

system. We depict the most distributed setting, where each of

the three functions is implemented separately from existing

services, though a deployment might merge functionality. For

example, the resource gateway might be folded into an already

existing component for session management.

Our system supports internal and external authentication

servers. An internal authentication server corresponds to a

service provider offering anonymous access themselves, e.g.,

the New York Times website might offer anonymous access

at a premium. An external authentication server corresponds

324

Application
Server

Authentication
Server

Client
Application

User Agent

Gateway

Client Application Service

Authentication Service

2

1

4 3

5 6

78

Fig. 1. The communication between the authentication server, resource
gateway, and user agent with respect to the client and the service. � Com-
munication is initiated by the user agent and the authentication server verifies
the credentials. � The authentication server verifies the credentials and returns
a sign-in token to the user agent. � The user agent communicates this sign-
in token to the gateway and, afterward, � passes this information to the
client application for use. � The client application includes the token as a
cookie along with its normal request. � The gateway checks that the sign-in
token has not already been used in the current epoch and then proxies the
connection to the application server. � The application server returns the
requested content and 	 the gateway verifies that the connection is still valid
before returning the response to the client.

to an entity providing anonymous access to already existing

web services. For example, a commercial anonymous web

proxy (like proxify.com or zend2.com) might offer anonymous

services.

Our system implements registration, though it is not de-

picted in the figure. We do not discuss the payment portion

of the registration protocol. Anonymous payment is a separate

and orthogonal problem. Possible solutions include paying in

some form of e-cash [10] or BitCoins [25].

A service might allow multiple re-ups within a single epoch.

If a user application knows it will not need to disassociate its

current actions from prior actions for a while, it could batch

several epochs worth of re-up operations. The server would

have to allow such batching, but might put the requests in a

queue to remain responsive to requests for the next epoch.

We want to allow services to use our authentication scheme

without much modification, so we provide a simple interface:

authorized clients during a time period are allowed to contact

the service and are cut off as soon as the session is no

longer valid. Services might have to accommodate Anon-

Pass’s access control limitations. For example, a streaming

media service might want to limit how much data can be

buffered within a given epoch. The service provider loses the

ability to enforce any access control for buffered data.

A. Timing

Anon-Pass requires some time synchronization between

clients and servers because both client and server must agree

on epoch boundaries, and Anon-Pass supports short epochs.

To support a 15 second epoch, clients and servers should

be synchronized within about a second. The network time

protocol (NTP) is sufficient, available and scalable for this

task. The pool.ntp.org organization3 runs a pool of NTP

servers that keep the clocks of 5–15 million machines on the

Internet synchronized to within about 100 ms.

The server response to a login request includes a timestamp.

Clients verify that they agree with the server on the current

epoch. Client anonymity could be violated4 if the epoch num-

ber ever decreases, so clients must track the latest timestamp

from every server they use and refuse to authenticate to a

server that returns a timestamp that is earlier than a prior

timestamp from that server. This ensures that regardless of

any time difference between server and client, anonymity is

preserved.

Clients who will re-up choose a random time during the

epoch to send the re-up request in order to prevent repetitive

behavior that becomes identifying. However, clients avoid re-

upping at the end of the epoch to avoid service interruption

(e.g., in our prototype, clients re-up in the first 4
5 of the epoch).

Randomizing the re-up request time also has the benefit of

spreading the computational load of re-ups on the server across

the entire epoch.

B. Client user agent

The client user agent is responsible for establishing the

client secret, communicating with the authentication server,

and maintaining a session for the client. Separating it from the

client application achieves two goals: it minimizes the amount

of code that needs to be trusted by the user to handle her

secrets and and it lowers the amount of modification necessary

to support new client applications.

Once the user agent establishes a connection with the

authentication server, it runs our login protocol, and the user

agent receives a (standard, public-key) signature on the PRF

value and the current epoch. The user agent sends this certifi-

cate to the resource gateway as proof that it is authenticated

for the current epoch. The resource gateway uses the signature

to determine token validity. The user agent cannot use this

certificate in a later epoch.

When the user agent and authentication server run our re-

up protocol, the user agent receives a signature that includes

both the current epoch and the next epoch, as well as the

two corresponding PRF values. These additional values allow

the resource gateway to link the re-up operations back to the

original request.

The user agent handles almost all of the protocol state,

but the original client application still needs to identify itself

as authenticated. Thus, the user agent transforms the signed

certificate from a login, into a per-session user credential (e.g.,

a cookie for HTTP-based services). The only operation most

client applications need to support is the ability to send this

credential along with its request. The client application does

not need to make any changes as the user agent re-ups; the

3http://www.ntp.org/ntpfaq/NTP-s-algo.htm
4Anonymity would not necessarily be completely broken, but the server

could link the current session of a client with a prior one.

325

user agent’s actions ensure that the same session credential

remains valid for the session’s duration.

C. Authentication Server

The authentication server is separated from the service to

provide greater flexibility for service providers. The server’s

primary task is to run the authentication protocols and ensure

that users are not authenticating more than once per epoch.

Since the protocol’s cryptographic operations use a lot of

computational resources, Anon-Pass was designed so that an

authentication service provider can distribute the work among

multiple machines. The only information that needs to be

shared between processes are the PRF values and the epoch

of currently authenticated users (e.g., by using a distributed

hash table (DHT)). Only storing information about currently

authenticated users relieves a service provider from having to

store all spent tokens, which requires unbounded storage.

D. Resource Gateway

The resource gateway is designed to perform a lightweight

access check before sending data back to a client. Only if a

client is authenticated for an epoch can it receive data during

that epoch. Therefore the epoch length (which is determined

by the service provider) bounds how much data can go to a

client before the client must reauthenticate (login or re-up).

When the authentication server is external to the service,

the authentication server never talks directly to the resource

gateway. User misbehavior (i.e., a double authentication at-

tempt) will not cause the user to be immediately disconnected.

The authentication server will refuse any re-up request from a

misbehaving client, disconnecting them at the start of the next

epoch.

A resource gateway is composed of two logical parts – one

handles the user agent updates, the other part handles the client

request. In a large distributed system, a service provider might

split these into different parts to place access control on the

outer perimeters and the user agent update handler off the

critical processing and request path.

E. Multi-epoch login

As we discuss in Section III-C, we can combine a login with

multiple re-up operations. Allowing re-up with login provides

the benefits of long epochs that start on demand and can

provide request rate limiting by preventing reauthentication

for at least a known period of time. It also reduces the total

computation done by the server.

Multi-epoch logins allows Anon-Pass to be used for unlink-

able resource reservation of digital and even physical goods,

for example, to reserve computer access at an Internet cafe.

Users can reserve a resource for a variable number of epochs,

without needing to periodically extend access.

Consider a subway system that supports month-long sub-

scription passes. Because the transit authority does not want

riders to all enter with one pass, it limits the access that each

pass can grant. The New York City MTA lists 18 minutes as

Operation Baseline Pairing
Preprocessing

Signature
Precompute

Client Login 19.9 15.8 13.5

Server Login 16.0 7.9 7.9

TABLE I
PAIRING AND SIGNATURE PREPROCESSING DIFFERENCES. ALL TIMES ARE

IN MILLISECONDS.

the lockout period5 between uses of an unlimited ride card.

Anon-Pass can provide anonymous authentication for a transit

subscription pass. A long epoch helps limit how often a user

can access; however, this is not enough to prevent two users

from sharing a single credential wherein the first user uses the

credential immediately before an epoch change, and a second

uses the same credential immediately afterward. If a service

requires multiple authenticated tokens for the same credential

upon access, then this form of sharing is prevented.

V. IMPLEMENTATION

We implement the cryptographic protocol in a library,

libanonpass, using the Pairing Based Cryptographic Li-

brary [21], PolarSSL6 for clients, and OpenSSL7 for the server.

Both the client and server operations are encapsulated in this

library’s 1,434 lines of code.8 The library includes a number

of management functions for initializing and clearing data

structures, and protocol functions for creating and verifying

requests for registration, login, and re-up.

We arrange terms to minimize exponentiations and we reuse

partial computations in the login and re-up zero-knowledge

proofs to make them more efficient. We further improve

performance by implementing a multi-epoch authorizing zero-

knowledge proof for verifying re-up tokens during a login.

In addition, we use two different forms of preprocessing:

preprocessing the pairing operation and precomputing a known

portion of the client login message. Table I shows the improve-

ments of these optimizations.

To show the flexibility of our protocol, we implement

a number of usage scenarios including a streaming music

service, an anonymous unlimited-use public transit pass, and

a third party authentication proxy. These applications are all

large enough to highlight implementation issues specific to

each context.

The authentication server is implemented as a 926 line

module for the lightweight HTTP server Nginx9. Nginx

uses a process pool rather than a thread pool for handling

concurrency and therefore minimizes synchronization. The

only shared state for Anon-Pass is a hash table of currently

active login tokens. In our prototype, we dedicate a server

to maintaining this hash table whose contents are get and set

using RPCs. The performance of this hash table server is not a

5http://www.mta.info/metrocard/compare.htm
6https://polarssl.org/
7http://www.openssl.org/
8Counted by SLOCCount. http://www.dwheeler.com/sloccount/
9http://nginx.org/

326

bottleneck for any of our workloads. In a deployment situation,

the hash table could be a distributed hash table (DHT) [28],

[22] run by the service provider. DHTs are a common part of

the software infrastructure in data centers.10

The resource gateway is implemented as a 443 line Nginx

module. The module performs all of the operations needed

by the application service. It can checks and updates session

information for clients, and terminates connections when an

unauthenticated request is made or a response is returned. Each

of these operations is designed to be as simple as possible and

could be merged with a frontend server or load balancer.

The basic client user agent consists of two pieces. There

are 789 lines of code that handle the client connection and

interface with libanonpass, and there are 357 lines of

code that handle configuration parsing and the client state

machine. The protocol messages are sent by using cookies to

simplify server-side parsing and minimize client application

modifications.

In the rest of this section, we will talk about the structure

of each of these applications and the specific implementation

changes needed for each.

A. Streaming Music Service

We implement a streaming music service over HTTPS

by exposing media from web accessible URIs. The service

directly implements our anonymous credential scheme and

allows a user to choose the granularity of an anonymous

session as either a full playlist or as an individual song. We

modify 54 lines of VLC11 to communicate with our user-agent

and pass our session token as an additional cookie.

Our music service allows users to download songs, but we

rate-limit playback. Rate limiting reduces network bandwidth

usage, which allows our service to support more clients with

jitter-free service. Rate limiting also reduces the amount of

data a client can buffer during an epoch. If a client loses its

anonymous service in the next epoch, it will only have a small

amount of buffered data. The music service has no ability to

enforce access control for that buffered data.

B. Public Transit Pass

We implement a public transit pass as an Android appli-

cation. Currently, public transit providers who issue month

long or week long “unlimited” access passes limit user access

to prevent cheating. Without safeguards, a user could give

her pass to all of her friends to ride for free. Anonymous

subscriptions are able to provide these safeguards without

revealing user’s identity (so users’ movements cannot be

tracked).

As an example, the average daily ridership of BART in the

San Francisco Bay Area for the months of August through

October, 2012 is 401,323 people on weekdays [30]. While

we do not have data on traffic peaks, the total load is easily

10For example, the Cassandra key-value store, which can easily be used
as a DHT, is used by a wide variety of commercial data centers. See http:
//www.datastax.com/cassandrausers.

11http://www.videolan.org/vlc/index.html

handled by Anon-Pass. A single three-epoch login verification

takes approximately 8.4 ms on our system which is very

close to the base cost of login verification of 7.9 ms. One

modern CPU core on a server can run the 400,000 verifications

in just a little under an hour. These operations are trivially

parallelizable across multiple cores and machines.
We use the Java Native Interface (JNI) to call Anon-Pass

from an Android application. The Android application has a

simple interface with a single button to generate a login and

two re-up additional PRFs. It then displays this data as a quick

response (QR) code for a physical scanner to read. If a transit

provider chooses a 6 minute epoch length, then this would

create a 12 to 18 minute window in which a login attempt

from the same phone would fail.
Other anonymous subscription systems such as Unlinkable

Serial Transactions [29] or anonymous blacklisting systems

such as Nymble [17] or BLAC [31] require network connec-

tivity at the time when a client uses an authentication token.

When using a blacklisting system, a user wants to proactively

fetch the blacklist to ensure that she is not on the list prior

to contacting a server, otherwise she could be deanonymized.

The size of a blacklist can grow quickly; for example, BLAC

adds 0.27KB of overhead per blacklist entry. When using a

UST-like system, the user must receive the next token when

a prior token is used up (but not before). Anon-Pass is ideal

for subway systems where network phone coverage is spotty

at best, since it only needs to communicate in one direction

at the subway entry gate.

C. Access Proxy
We implement a server to allow users to proxy access to

websites. In addition, the server could authenticate for users

with legitimate accounts provided by the service to access

news sites and other content. All traffic and accesses appear to

originate from the same entity and it is up to the proxy service

to multiplex the user credentials. Users’ anonymity leverages

both the wide variety of accessible services as well as the

number of proxy users.
To approximate an access proxy, we sign up for accounts at

a number of news websites. The service consists for two parts:

the scraper logs into the news sites using valid credentials and

caches the results for later use, and the proxy injects cached

cookies into authenticated user requests. A legitimate service

running this type of proxy would likely need to work with

the news sites to better control creation of user accounts and

history. Ideally, the proxy service would provide ephemeral

user accounts for a client session; however, current systems

do not allow us to easily accomplish this task.
As an approximation of the necessary steps, we use a cache

of cookies, but allow more than one client to share a real user

account. The proxy cycles through its list of cookies for a

given news site rather than generating ephemeral accounts or

registering for new legitimate accounts.

VI. EVALUATION

We evaluate Anon-Pass through a series of micro-

benchmarks and several larger systems. The authentication and

327

application servers run on two Dell Optiplex 780s, each of

which has a quad-core 2.66 GHz Intel Core 2 CPU, 8 GB of

RAM, and uses Ubuntu Linux 12.04. The hash server runs on

a Dell 755 with an older generation quad-core 2.66 GHz Intel

Core 2 CPU, only 4 GB of RAM, and also uses Ubuntu Linux

12.04. The elliptic pairing group is a Type A (in the naming

conventions of the PBC library) symmetric pairing group with

a 160-bit group order and 512-bit base field, and the ECDSA

signature uses a 160-bit key.

A. Comparison to Prior Work

We compare the computational complexity of our scheme

to prior work by counting the computationally expensive op-

erations (i.e., group exponentiations and pairings) in each. We

only examine server-side computation, as this is the limiting

factor in the scalability of the system. The main competing

schemes are those from Camenisch et al. [4] and an adaptation

of a scheme from Brickell and Li [3].

Camenisch et al. [4] mention two alternatives for their

construction, using either an RSA-based signature scheme [6]

or the CL signature scheme we use. We found the description

of their RSA-based instantiation insufficient to produce an

implementation, but note that the performance of this variant

will be hurt by the need to use large moduli to prevent known

factorization attacks. The second variant, using the same CL

signatures we use, is not described fully in their paper.

Brickell and Li [3] propose a scheme for direct anonymous

attestation (DAA) with controlled linkability which could

be adapted to give an anonymous subscription scheme with

conditional linkage. The correspondence between their scheme

and ours is that the basename which controls linkability

in their scheme corresponds to the epoch number in our

scheme. Using different basenames per epoch ensures that the

(B,K) components of their signature are equal for the same

client secret if submitted in the same epoch and unlinkable

otherwise. Re-up for client secret f can be performed between

signatures (B1,K1) and (B2,K2) in their scheme via the

proof of knowledge

PoK{f | Bf
1 = K1 ∧Bf

2 = K2},
though we stress that they do not consider this idea in their

work. Their scheme requires the use of asymmetric pairings.

With the PBC library, we measured that asymmetric pairings

lead to prohibitively slow login operations. (See Table III.)

Additionally, many of the curve families supported in PBC,

including all those with asymmetric pairings, have high em-

bedding degree. While high embedding degree leads to lower

field sizes for G1 and G2 for a given level of security, it

complicates multiplication in GT , which can lead to a slower

re-up operation.

In comparing the above to our scheme we use notation from

Brickell and Li [3] to describe operation counts: Each count

is written as a sum of individual operation types. A term nGx

indicates n multiexponentiations in group G with x bases. P
indicates a pairing, and Pp indicates a preprocessable pairing,

Scheme Login Re-up
Anon-Pass G3

T +G4
T + 8Pp 2G2

T

Pairing-based DAA ([3]) G2
1 +G2

2 +G4
T + P 2G2

T
†

Clone Wars ([4]) Comparison impossible, see text

TABLE II
SERVER-SIDE OPERATION COUNTS FOR THE DIFFERENT CRYPTOGRAPHIC

SCHEMES. † INDICATES ADDITIONS THAT WE PROPOSE TO EXISTING

SCHEMES.

Group Type G1 Exp G2 Exp GT Exp Pairing (Preprocessed)
A512 ECC 2.4 2.4 0.2 1.8 (0.8)

D159 ECC 0.8 6.5 1.5 5.1 (3.9)

F160 ECC 0.8 1.5 6.0 27.7 (27.7)

TABLE III
OPERATION COSTS FOR DIFFERENT GROUPS PROVIDING 80-BIT SECURITY.

ALL TIMES ARE IN MILLISECONDS.

that is, one with one argument fixed after server-side setup is

complete. Results are given in Table II.

We give measured operation costs in terms of CPU uti-

lization in Table III for different families of curves where

all components of the system are at least an 80-bit security

level. This implies EC group orders of at least 160 bits and

finite field sizes of at least 1024 bits [26]. From these raw

operation times, we estimate CPU utilization for operations

in Table IV. We estimate multiexponentiation times based on

ratios of the number of multiplications required when we use

a simultaneous k-ary exponentiation for the optimal k value.

For 2, 3, and 4 bases with 1024-bit exponents, the costs

are 1.1, 1.3, and 1.4 times that of an optimal k single base

exponentiation respectively. See [23] for information on basic

exponentiation and multiexponentiation techniques.

B. Measured Operation Costs

Table V presents the base time for the protocol operations.

Here the operations are run in isolation. We did not use multi-

exponentiation in our prototype because the PBC library does

not implement the operations; however, this could be added

to further reduce the cost. In addition, there are overheads

when integrating the protocols into a full system. Figure 2

Scheme Group Login Re-up
Anon-Pass A512 6.9 0.44

Pairing-Based DAA [3] D159 15.2 (2.2×) 3.3 (7.5×)

TABLE IV
SERVER-SIDE OPERATION COSTS FOR DIFFERENT SCHEMES USING AN

OPTIMAL GROUP FOR RE-UP. ALL TIMES ARE IN MILLISECONDS.

Protocol Client Server

Registration
Create message 10.4 Verify message 7.3

Verify signature 13.0 Sign message 12.5

Login Create message 13.5 Verify message 7.9

Re-up Create message 1.3 Verify message 0.7

TABLE V
RAW PROTOCOL OPERATION TIME IN MILLISECONDS.

328

Operation Time Breakdown

Authentication Operation
Register Login Re−Up

T
im

e
(m

s)

0

2

4

6

8

10

12

14

16

18

20
19.92

8.11

0.95

Data handling

Hash Server

Sign

Verify

Fig. 2. The average cost of different requests on an unsaturated server. The
bulk of the time is spent in signature verification.

shows a break down of each authentication operation and how

time is spent on the server. For registration, the signature

operation is our modified CL signature on the blinded client

secret, whereas the signature for login and re-up are standard

ECDSA signatures. The majority of the work for the ECDSA

signature can be precomputed, and hence takes almost no

time to compute. There is also a small amount of time spent

contacting the hash server during login and re-up that does

not happen for registration. Re-up is 8.5× faster than login.

C. Authentication Server Scaling

We run the authentication service in different configurations

to see how well the system scales with the addition of more

cores or more machines in the system. For these experiments,

we artificially restrict computation to a subset of the possible

cores from one to eight cores. We precompute a number

of valid login and re-up tokens and measure the maximum

capacity of the servers.

Figure 3 shows the throughput scaling across two four-core

machines. Note that for an average mix of 20% logins to 80%

re-up operations, the servers can handle over 3× as many

requests per second as 100% logins. The re-up line shows

the upper bound on the number of operations our servers can

handle per second, approximately 8,500 requests/sec for the

two servers. If we consider an epoch length of 15 seconds,

this implies a re-up capacity of over 120,000 concurrent user

sessions for the two quad-core CPUs.

Throughput vs CPU Cores

CPU Cores

R
eq

u
es

ts
/s

ec

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 4 8

Login

Mixed (20% to 80%)

Re−Up

Fig. 3. The maximum throughput for a different mix of operations. There is
a 3.5× difference between just login and the 20% to 80% mix and a 8.9×
different between login and re-up.

D. Gateway Cost

Figure 4 shows the relative latency overhead of a request

compared with simply downloading a number of different

sized files. The experiment is run on a local area network to

isolate the computational overhead; however, the authentica-

tion server, gateway, and hash server are all hosted on separate

machines to better simulate a real deployment. Overhead for

reasonably sized files is low. And, although the worst case

of accessing a 1 byte file suffers a 1.30× overhead, the time

difference is only 0.15 milliseconds. In comparison, receiving

16 MB of data takes on average 194ms, dwarfing the additional

cost of the hash server query.

E. Streaming music service

We build an example streaming music service. We lack

datacenter-level resources, and so must adapt the benchmark

to run on our local cluster of machines: network bandwidth

is limited to 1 Gbps; we run the authentication server and

application server on the Dell Optiplex 780s; and the hash

server on the Dell 755. Clients run on 10 other machines. Each

client randomly chooses a song and fetches it using pyCurl

rather than a more memory-intensive media player like VLC.

Avoiding VLC allows us to scale to a greater number of clients

for our testbed.

We serve a media library consisting of 406 MP3 files, whose

length is drawn from the most popular 500 songs on the

Grooveshark music service, eliminating duplicates and songs

that are over 11 minutes long. The average length of a song is

4:05±64.38 s. We represent the music files using white noise

329

Gateway Access Latency

Download Size
1 B 256 B 4 KB 64 KB 1 MB 16 MB

R
el

at
iv

e
d

if
fe

re
n

ce

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.30 1.30

1.20

1.05
1.01 1.00

Baseline

Gateway

Access auth.

Playback auth.

Fig. 4. Average latency overhead versus different sized client requests. Access
authentication only verifies client requests while playback authentication also
verifies returned data.

encoded at 32Kbps. The system dynamics are independent of

the music content, and 32Kbps allows our server to saturate

its CPU before saturating its outbound network bandwidth.

Media streaming servers want their clients to have enough

data to buffer changing network conditions, but transferring

too much data too quickly costs server resources with no end-

user benefit. For our service, clients are allowed a burst of

32 KB at the beginning of each song request which helps

to fill quickly the client song buffer. After this initial burst,

the server aggressively throttles the download speed to only

5 KBps (or 40 Kbps) – enough to keep each stream playing,

but not enough for a client to quickly download the entire

library. We measure how much data each client downloaded as

a function of time and infer the number of pauses for buffering

that would have occurred during song playback.

We deploy a tightly integrated service running an authenti-

cation server, gateway, and data server with an epoch length

of 15 seconds. We simulate two different scenarios: one case

using only login and the other using both the login and re-

up operations. We use an epoch length of 15 seconds as we

believe this would be an acceptable delay for users to re-

anonymize between songs.

Figures 5 and 6 show the performance of Anon-Pass and

a modified login-only service that provides a linkable re-up

service at the server CPU cost of a regular login. We modify

the client programs to call the anonymous subscription service.

In both the login-only configuration and the Anon-Pass

configuration, we ramp up the number of concurrent clients at

a rate of 300 new clients every epoch (approximately 20 new

Authentication Server
CPU Usage

Time (minutes)
0 10 20 30

%
 C

P
U

0

20

40

60

80

100

Login−only
saturation

Login−only

Anon−Pass

Fig. 5. The CPU usage on the authentication server measured every 5
seconds. The average CPU utilization for Login-only during the first stable
segment (6,000 clients) is 77.9% (±2.42) and reaches saturation at about
the 17 minute mark, or approximately 8,100 clients. The CPU utilization for
Anon-Pass is 16.8% (±0.73) at 6,000 clients, and 33.4% (±0.96) at 12,000
clients (the second stable segment).

clients a second) until we reach 6,000 total clients. After 10

minutes, we continue to increase the total number of clients

until we reach 12,000 active clients. At 12,000 clients, the

login-only configuration has a client failure rate of 34% due

to CPU saturation. On the other hand, Anon-Pass only fails

0.02% of the requested songs.

Figure 5 shows the limited capacity of the login-only

service. At 6,000 clients, the login-only service is able to

keep up with authentication requests. However, the the steady-

state average CPU utilization is already 77.9%. At the CPU

saturation point, there are 8,100 clients attempting to connect

to the service.

Figure 6 shows the CPU utilization on the application server

and measures the impact of the gateway server. In addition

to serving content, an authenticating application server must

also receive client re-authentication updates and interact with

the hash server. The intermittent client updates (once per

epoch) each require an ECDSA signature verification which is

relatively CPU intensive. Each update also requires at least one

network round trip to the hash server (two in the case of re-up),

and every active client connection also triggers a check (and

hence network round trip) once every epoch. In combination,

Anon-Pass adds an appreciable, but manageable amount of

additional CPU utilization. On average, 6,000 clients adds

5.9 percentage points of CPU utilization and 12,000 clients

330

Application CPU Usage

Time (minutes)
0 10 20 30

%
 C

P
U

0

10

20

30

40

50

Login−only
saturation

Login−only

Anon−Pass

Unmodified application

Fig. 6. The CPU usage on the application server measured every 5 seconds.
The CPU usage with login-only follows the Anon-Pass behavior until the
authentication server reaches saturation. Clients timeout and the application
server has an overall drop in CPU utilization due to the lower number of
clients successfully completing requests.

adds 11.8 percentage points. The login-only configuration adds

approximately the same amount of overhead for as long as the

authentication server can keep up, but as soon as clients begin

to fail, the application server sees a decrease in overall CPU

utilization due to the decrease in the number of successful

clients. Clients request new songs causing a larger amount of

variation in the application server CPU utilization.

Anon-Pass keeps its state in hash server memory, and

does not require persistent storage. One average, the hash

server memory utilization is only 2.1 KB per client. However,

the authentication server requires an additional 23.8 KB of

memory per client and the application server requires an

additional 7.3 KB of memory per client. The unmodified server

requires 52.1 KB of memory per client, so Anon-Pass has a

memory overhead of 1.64× per active client.

F. Public Transit Pass

We compute the amount of time it takes to generate a login

QR code on an HTC Evo 3D. Recall, the login QR code

consists a normal client login and three re-up tokens. The

time to generate a login QR code is 222 ± 24 ms. Power

usage is minimal because the the application does not need to

communicate with any remote servers over the network.

G. Content proxy service

We set up a proxy to test how much latency our proposed

proxy service adds to clients’ requests. We host the proxy

Website Normal Access Proxied Access
http://news.yahoo.com/ 2.69 (±0.46) 2.89 (±0.42)

http://www.nytimes.com/ 2.74 (±1.12) 3.20 (±0.76)

http://www.guardiannews.com/ 3.03 (±0.27) 2.66 (±0.37)

http://abcnews.go.com/ 2.35 (±0.55) 2.66 (±0.71)

http://espn.go.com/ 1.67 (±0.14) 1.97 (±0.14)

http://www.npr.org/ 1.24 (±0.19) 1.14 (±0.29)

TABLE VI
AVERAGE REQUEST LATENCY OVER 20 TRIALS IN SECONDS.

on an AWS micro instance12 for ease of access and to better

simulate a real deployment.

Table VI shows the average latency for accessing the sites

using Firefox. The proxy generally increases page load latency

by 7.4–18.0%. However, due to content variability, two of the

sites load faster through the proxy.

In four of these cases, the proxy works without ever needing

to send the authenticated session information back to the

client. However, for npr.org and guardiannews.org, the proxy

must return to the client some of the session cookies for the

websites so the browser can indicate that the user is logged

in. Giving session cookies to the client is unfortunate because

depending on how a site formats its cookies, a user could

potentially steal the cookie and attempt to change the login

information related to the account. However, passing cookies

is safe for these two sites because they require an additional

reauthentication before account details may be modified.

VII. RELATED WORK

Our work continues research into anonymous creden-
tials [9], which allow access control while maintaining

anonymity. We describe several themes of research in anony-

mous credential schemes and show the point that our system

occupies in design space.

A. Flexible policy support

Handling credential abuse has been a central theme of

much of the work on anonymous credentials. However, abuse

of credentials takes on different meaning in many of the

different systems. Early work (e.g. [13]) focused around e-
cash [10], where credentials represented units of currency.

Here the relevant policy is to prevent double spending of the

same currency.

Recent work has focused on anonymous blacklisting systems
(e.g. [31], [17]). In these systems, a service is capable of

blacklisting a user, excluding her from future interactions

with the service, based on her actions during a transaction.

However, many anonymous blacklisting systems leave black-

listing decisions completely up to the service, as opposed

to e-cash based systems, which only allow the service to

enforce a specific policy. Some work [27] has been done

to hold services to particular policies, though this work uses

mechanisms beyond pure cryptography (trusted hardware).

12http://aws.amazon.com/ec2/instance-types/

331

Anon-Pass chooses to trade policy flexibility for perfor-

mance. Nonetheless, we have shown (§V) that Anon-Pass is

flexible enough to support a wide variety of applications.

B. Efficiency

Stubblebine, Syverson, and Goldschlag [29] propose unlink-

able serial transactions to handle anonymous subscription. In

their scheme, when users register they receive a blind signa-

ture. A user can use this blind signature to begin a transaction

and receives a new signature upon transaction end. However,

this means the system must store and be able to efficiently

search through all used tokens while the system key material

remains unchanged (likely the period of a subscription, which

could be on order of months). Blanton [2] uses more advanced

cryptographic techniques to support client secret expiration,

but incurs the same space requirements. Anon-Pass requires

only the ability to store tokens for a fixed number of epochs,

which is storage proportional to the number of requests that

can occur in a few minutes, rather than months.

While anonymous blacklisting techniques could possibly be

used to provide anonymous subscription (i.e. by temporar-

ily blacklisting logged-on clients), anonymous blacklisting

schemes often suffer from poor scalability. For example,

BLAC [31] requires time linear in the number of blacklisted

users to check the blacklist. PEREA [32] reduces this to linear

in the number of logged in users. Even the latest in this series

of work BLACR [1] supports 26-38 authentications/minute

on an 8-core machine with 5000 blacklisted users. Anon-Pass

requires only hash table lookups to check for double usage,

otherwise operations are constant in the number of registered

and logged in users. With Anon-Pass on a 4-core machine,

our micro-benchmark sustains almost 500 login operations a

second, and scales up to 12,000 concurrent users in the music

streaming benchmark.

Nymble [17] improves performance of blacklisting systems

by adding a trusted third party that can revoke anonymity as

needed. Follow-on projects try to divide trust among multiple

parties [16] or reduce involvement of trusted third parties [20].

Anon-Pass maintains efficiency without needing any trusted

third party.

Most papers from the cryptographic literature do not include

implementations and benchmarks. More applied papers still do

not include system use in actual scenarios. In this paper we

describe how anonymous subscription primitives affect system

performance in more realistic scenarios.

VIII. ACKNOWLEDGMENTS

We thank Sangman Kim and Lara Schmidt for their kind

help. We also thank our shepherd, Paul Syverson, and the

useful feedback from the anonymous reviewers. This research

was supported by funding from NSF grants IIS-#0964541,

CNS-#0905602, CNS-#1223623, and CNS-#1228843 as well

as NIH grant LM011028-01.

REFERENCES

[1] Man Ho Au, Apu Kapadia, and Willy Susilo. BLACR: TTP-free
blacklistable anonymous credentials with reputation. In Proceedings of
the 19th Annual Network and Distributed System Security Symposium
(NDSS), February 2012.

[2] M. Blanton. Online subscriptions with anonymous access. In Pro-
ceedings of the 2008 ACM symposium on Information, computer and
communications security, pages 217–227. ACM, 2008.

[3] Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further
reducing TPM resources. In Conference on Trust and Trustworthy
Computing, 2010.

[4] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clone wars: Efficient
periodic n-times anonymous authentication. In ACM Conference on
Computer and Communications Security, pages 201–210, 2006.

[5] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact
e-cash. In EUROCRYPT, pages 302–321, 2005.

[6] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with
Efficient Protocols. In International Conference on Security in Com-
munication Networks, 2002.

[7] Jan Camenisch and Anna Lysyanskaya. Signature Schemes and Anony-
mous Credentials from Bilinear Maps. CRYPTO, 2004.

[8] Jan Camenisch and Markus Stadler. Efficient group signature schemes
for large groups. In Burt Kaliski, editor, Advances in Cryptology -
CRYPTO 97, volume 1296 of Lecture Notes in Computer Science.
Springer Verlag, 1997.

[9] D. Chaum. Security without identification: Transaction systems to make
big brother obsolete. Communications of the ACM, 28(10):1030–1044,
1985.

[10] David Chaum. Blind signatures for untraceable payments. In Advances
in Cryptology: Proceedings of CRYPTO ’82, pages 199–203. Plenum,
1982.

[11] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. In Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, pages 41–50. IEEE, 1995.

[12] Ivan Damgård, Kasper Dupont, and Michael Østergaard Pedersen.
Unclonable group identification. In EUROCRYPT, pages 555–572, 2006.

[13] Ivan Damgrd. Payment systems and credential mechanisms with prov-
able security against abuse by individuals. In Advances in Cryptology
- CRYPTO ’88, 8th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 21-25, 1988, Proceedings, volume
403 of Lecture Notes in Computer Science, pages 328–335. Springer,
1988.

[14] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: the
second-generation onion router. In Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13, SSYM’04, 2004.

[15] Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random
function with short proofs and keys. In Public Key Cryptography, pages
416–431, 2005.

[16] R. Henry, K. Henry, and I. Goldberg. Making a nymbler nymble using
verbs. In Privacy Enhancing Technologies, pages 111–129. Springer,
2010.

[17] P. Johnson, A. Kapadia, P. Tsang, and S. Smith. Nymble: Anonymous
ip-address blocking. In Privacy Enhancing Technologies, pages 113–
133. Springer, 2007.

[18] Michael Z. Lee, Alan M. Dunn, Jonathan Katz, Brent Waters, and
Emmett Witchel. AnonPass: Usable anonymous subscriptions - Full
Version. http://z.cs.utexas.edu/users/osa/anon-pass/.

[19] Michael Liedtke. Netflix users watched a billion hours last
month. http://usatoday30.usatoday.com/tech/news/story/2012-07-03/
netflix-online-video/56009322/1.

[20] Z. Lin and N. Hopper. Jack: Scalable accumulator-based nymble system.
In Proceedings of the 9th annual ACM workshop on Privacy in the
electronic society, pages 53–62. ACM, 2010.

[21] B. Lynn. On the implementation of pairing-based cryptosystems. PhD
thesis, Stanford University, 2007.

[22] Petar Maymounkov and David Mazières. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers from
the First International Workshop on Peer-to-Peer Systems, IPTPS ’01,
pages 53–65, London, UK, UK, 2002. Springer-Verlag.

[23] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. http://cacr.uwaterloo.ca/hac/.

332

[24] Shigeo Mitsunari, Ryuichi Sakai, and Masao Kasahara. A new traitor
tracing. IEICE Transactions on Fundamentals, 2002.

[25] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Consulted,
1:2012, 2008.

[26] National Institute of Standards and Technology. Recommendation for
Key Management - Part 1: General (Revision 3). http://csrc.nist.gov/
publications/nistpubs/800-57/sp800-57 part1 rev3 general.pdf.

[27] Edward J. Schwartz, David Brumley, and Jonathan M. Mccune. A
contractual anonymity system. In NDSS, 2010.

[28] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
A Scalable Peer-to-Peer Lookup Protocol for Internet Applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, February 2003.

[29] Stuart G Stubblebine, Paul F Syverson, and David M Goldschlag.
Unlinkable serial transactions: protocols and applications. ACM Trans-
actions on Information and System Security (TISSEC), 2(4):354–389,
1999.

[30] Bay Area Rapid Transit. Monthly ridership reports. http://www.bart.
gov/about/reports/ridership.aspx.

[31] Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith.
Blacklistable Anonymous Credentials: Blocking Misbehaving Users
Without TTPs. In CCS, 2007.

[32] P.P. Tsang, M.H. Au, A. Kapadia, and S.W. Smith. Perea: Towards prac-
tical ttp-free revocation in anonymous authentication. In Proceedings of
the 15th ACM conference on Computer and communications security,
pages 333–344. ACM, 2008.

APPENDIX A

BACKGROUND

A. Bilinear Groups

Let G,GT be two cyclic groups of the same prime order q,

and let g be a generator of G. We say G is bilinear if there is

an efficiently computable map e(·, ·) : G×G→ GT satisfying

1) Bilinearity. e(ga, gb) = e(g, g)ab.

2) Non-degeneracy. e(g, g) �= 1.

This map is also called a pairing. Note gT ≡ e(g, g) is then

a generator of GT .

B. Complexity Assumptions

We describe the LRSW and DDHI assumptions in a

group G. Note that both assumptions imply that computing

discrete logarithms in G is hard.

LRSW assumption [7]. Let G be a group of prime order q,

with generator g. The LRSW assumption is that any efficient

algorithm A succeeds in the following experiment with neg-

ligible probability:

1) Choose x ← Zq and y ← Zq , and give g, X = gx, and

Y = gy to A.

2) A can query an oracle that, on input m ∈ Zq , chooses

A ← G \ {1} and returns (A,Ay, Ax+mxy). We denote

by M the set of inputs on which A queries its oracle.

3) A succeeds if it outputs (m,A,B,C) with m /∈ M and

such that A �= 1, B = Ay , and C = Ax+mxy .

Decisional Diffie-Hellman inversion (DDHI) assump-
tion [24]. Let G be a group of prime order q, with generator g.

The DDHI assumption is that for any efficient algorithm A and

any polynomial t the following is negligible:

Pr[A(g, gx, . . . , gxt

, g1/x) = 1]

−Pr[A(g, gx, . . . , gxt

, gy) = 1],

where x, y ← Z
∗
q .

C. Zero-Knowledge Proofs, Proofs of Knowledge

Consider an interactive protocol between a prover P and

verifier V , where the output is one bit from the verifier. We let

〈P(x),V(y)〉 = 1 (resp. = 0) denote the event that V outputs 1
(resp. 0) in the interaction, which we refer to as “accepting”

(resp., “rejecting”). This forms an interactive proof system for

a language L if V runs in probabilistic polynomial time and

the following properties are satisfied:

• Completeness. If x ∈ L, then Pr[〈P(x),V(x)〉 = 1] is

negligibly close to 1.

• Soundness. If x /∈ L, then Pr[〈P∗(x),V(x)〉 = 1] is

negligible for arbitrary P∗.

A distribution ensemble {X(a)}a∈S is a function from

S ⊂ {0, 1}∗ to probability distributions. Two distribution

ensembles X = {X(a)}a∈S , Y = {Y (a)}a∈S are compu-
tationally indistinguishable if for all probabilistic polynomial-

time algorithms D and all a ∈ S∣∣∣Pr[D(X(a), a) = 1]− Pr[D(Y (a), a) = 1]
∣∣∣ < μ(|a|),

for some negligible function μ.

An interactive proof system for a language L is (computa-
tionally) zero knowledge, if for every probabilistic polynomial

time interactive algorithm V∗ there exists a probabilistic

polynomial-time algorithm Sim (a simulator) such that the

following two distribution ensembles are computationally in-

distinguishable:

• {viewP
V∗(x)}x∈L

• {Sim(x)}x∈L

where viewP
V∗(x) is a random variable describing the content

of the random tape of V∗ and the messages V∗ receives during

interaction with P on common input x.

Let R ⊆ {0, 1}∗×{0, 1}∗ be a binary relation. Define LR ={
x : ∃w | (x,w) ∈ R

}
. We say that R is an NP-relation if

• There exists a polynomial p such that for all (x,w) ∈ R,

|w| ≤ p(|x|).
• There exists a polynomial-time algorithm for deciding

membership in R.

If (x,w) ∈ R, we refer to w as a witness for x.

A interactive proof system for a language L is a proof of
knowledge if the following conditions hold:

• Non-triviality. There is an interactive algorithm P such

that for every (x,w) ∈ R, P (〈P(x,w),V(x)〉 = 1) = 1.

• Validity. There exists a probabilistic interactive algorithm

K such that for every interactive algorithm P∗, every

(x, y) ∈ R, if p(x, y, r) is the probability that V accepts

in 〈P ∗(x, y),V(x)〉 when P∗ has random tape r, then

K outputs y′ such that (x, y′) ∈ R in expected time

q(|x|)/p(x, y, r) for polynomial q.

333

