
Declarative, Temporal, and Practical Programming with Capabilities

William R. Harris∗, Somesh Jha∗, Thomas Reps∗†, Jonathan Anderson‡, and Robert N. M. Watson‡
∗{ wrharris, jha, reps }@cs.wisc.edu; University of Wisconsin-Madison, Madison, WI, USA

†GrammaTech Inc., Ithaca, NY, USA
‡{ jonathan.anderson, robert.watson }@cl.cam.ac.uk; University of Cambridge, Cambridge, England, UK

Abstract—New operating systems, such as the Capsicum
capability system, allow a programmer to write an application
that satisfies strong security properties by invoking security-
specific system calls at a few key points in the program.
However, rewriting an application to invoke such system
calls correctly is an error-prone process: even the Capsicum
developers have reported difficulties in rewriting programs to
correctly invoke system calls.

This paper describes capweave, a tool that takes as input
(i) an LLVM program, and (ii) a declarative policy of the
possibly-changing capabilities that a program must hold during
its execution, and rewrites the program to use Capsicum
system calls to enforce the policy. Our experiments demonstrate
that capweave can be applied to rewrite security-critical
UNIX utilities to satisfy practical security policies. capweave
itself works quickly, and the runtime overhead incurred in
the programs that capweave produces is generally low for
practical workloads.

I. INTRODUCTION

Developing practical but secure programs remains a diffi-

cult, important, and open problem. Network utilities such as

tcpdump and wget process data read directly from a net-

work connection, but execute vulnerable code [1], [2]. File

utilities and language interpreters are often run by a trusted

user to process untrusted data, but also execute vulnerable

code [3]–[7]. Once an attacker compromises vulnerable code

in any of the above programs, he can typically perform any

action allowed for the user that invoked the program.

Traditional operating systems provide only weak primi-

tives for applications to manage their privileges. As a result,

if a programmer wants to verify that his program is secure,

he typically must first verify that the program satisfies

very strong properties, such as memory safety. However,

recent work [8]–[11] has produced new operating systems

that allow programmers to develop programs that execute

untrusted code yet satisfy strong security requirements.

Moreover, programmers can develop such programs with

much less effort than fully verifying the program for a

traditional operating system. Such systems extend the set

of system calls provided by a traditional operating system

with security-specific calls (which henceforth we will call

“security primitives”). Throughout a program’s execution, it

interacts with the system by invoking security primitives to

signal key events in its execution. The developers of such

systems have manually modified applications to invoke secu-

rity primitives so that the application satisfies strong security

policies, even when the application contains untrusted code.

One example of an operating system with strong security

primitives is the capability operating system Capsicum [10],

now an experimental feature in FreeBSD 9 [12]. Capsicum

allows a programmer to compartmentalize his program into

separate modules that each have a subset of the full set

of privileges, following the principle of least privilege.

Capsicum tracks for each process (1) the set of capabilities
available to the process, where a capability is a file descriptor

and an access right for the descriptor, and (2) whether the

process has the privilege to grant to itself further capabilities

(i.e., open more files). Capsicum provides to each process

a set of system calls that the process invokes to limit its

capabilities. Trusted code in a program can first communi-

cate with its environment unrestricted by Capsicum, and then

invoke primitives to limit itself to have only the capabilities

that it needs for the remainder of its execution. Untrusted

code then executes with only the limited capabilities defined

by the trusted code. Thus, even if the untrusted code is

compromised, it will only be able to perform operations

allowed by the limited capabilities.

The Capsicum primitives are sufficiently powerful that

a programmer can rewrite a practical program to satisfy

a strong security policy by inserting only a few calls to

Capsicum primitives [10]. However, in practice it is difficult

for programmers to reason about the subtle, temporal effects

of the primitives. When the Capsicum developers first eval-

uated Capsicum, they rewrote programs, such as tcpdump,

in a way that they tentatively thought was correct, only to

discover later that the program was incorrect and required a

different rewriting [10]. Often, as in the case of tcpdump,

the difficulty results from the conflicting demands of (i)

using low-level primitives, (ii) ensuring that the program

satisfies a strong, high-level security requirement, and (iii)

preserving the core functionality of the original program.

This paper addresses the problem of writing programs for

capability systems, like Capsicum, by presenting a system,

called capweave, that takes from a programmer (1) a

program that does not invoke Capsicum primitives, and

(2) a declarative, temporal policy, stated in terms of the

capabilities that the program should hold over the course of

its execution, motivated by the principle of least privilege.

capweave automatically compartmentalizes the program

2013 IEEE Symposium on Security and Privacy

© 2012, William R. Harris. Under license to IEEE.

DOI 10.1109/SP.2013.11

18

and instruments it to invoke Capsicum primitives so that it

satisfies the policy when executed on Capsicum. We call the

problem of finding such an instrumentation the Capsicum

policy-weaving problem.

Our capweave policy weaver addresses two key chal-

lenges that a programmer faces when manually rewriting a

program for Capsicum. The programmer’s first challenge is

to define what “secure behavior” means for his program.

While Capsicum provides a powerful set of primitive opera-

tions, it does not provide an explicit language for describing

policies. Because the Capsicum developers did not have

such a language when first developing Capsicum, it was

impossible for them to formally define correctness for their

rewritten programs.

The programmer’s second challenge is to write his pro-

gram to be both secure and functional. A programmer can

typically secure a program on Capsicum by strongly limiting

the capabilities of the program. However, the rewritten

program may limit its capabilities too strongly at one point

of an execution, and as a result, may not have the capabilities

required to carry out core program functionality later in

the execution. The incorrect rewriting of tcpdump [10]

exemplifies this issue. To resolve conflicts between security

and functionality, a programmer must carefully rewrite his

program to maintain additional state about an execution, and

consult the state to determine when to invoke Capsicum

primitives, or execute a program function in a separate

process with distinct capabilities.

An additional challenge in designing capweave was

to structure it so that it uses a simple, declarative model

of Capsicum. Capsicum system architects and application

developers have developed and continue to develop libraries

of functions that an application can invoke to more easily

manage its capabilities [13]. For the remainder of this paper,

we refer to both the system calls and library functions that

a program invokes to manage its capabilities as security

primitives. When a Capsicum architect implements a new

primitive, he should be able to easily extend capweave so

that it can instrument programs to invoke the new primitive,

but he should not need to understand the details of the

instrumentation algorithm used by capweave.

To address the programmer’s first challenge, capweave
provides a policy language with which a programmer can

write an explicit, declarative, general policy that restricts

the privileges of the program in terms of capabilities. Each

policy is a regular expression over an alphabet of program

points paired with sets of capabilities. The policy allows all

program executions that occur with the specified restricted

privileges.

To address the programmer’s second challenge,

capweave takes an uninstrumented program and its

policy, and automatically instruments the program to

satisfy the policy. To do so, capweave constructs from

the program, policy, and the semantics of Capsicum an

automata-theoretic safety game [14] between an “Attacker,”

who “plays” program instructions, and a “Defender” who

plays Capsicum primitives, by applying an automata-
theoretic policy weaver [15]. The Attacker wins the game if

the sequence of plays violates the policy, and the Defender

wins otherwise. capweave searches for a winning

Defender strategy, and from the strategy, instruments the

program to (i) maintain instrumentation-state variables, and

(ii) invoke Capsicum primitives based on the values of the

variables so that the program satisfies its policy.

For a Capsicum architect to update capweave for an

updated version of Capsicum, they only need to update

declarative definitions of (i) the state maintained by Cap-

sicum, (ii) the primitives available to a program, and (iii)

each primitive’s effect on the Capsicum state. In practice,

the state and primitives are easy to define: together they

account for only one tenth of the capweave source code.

We determined experimentally that capweave allows a

programmer to harden practical programs to satisfy policies

that rule out known critical exploits of the programs. We

applied capweave to rewrite several UNIX utilities for

Capsicum that have demonstrated security vulnerabilities.

The rewritten programs included programs that were previ-

ously rewritten manually by the Capsicum team, programs

suggested through discussion with the Capsicum develop-

ment team, and the PHP CGI interpreter, whose policy

was defined by independent security researchers at MIT

Lincoln Laboratory. capweave allowed us to rewrite each

utility using only a small handful of program annotations,

no more than 11 lines, and a simple high-level policy of

no more than 115 lines in our policy language. Each policy

not only mitigated specific known exploits, but restricted

the capabilities of significant segments of the program,

potentially mitigating a large class of future vulnerabilities.

Programs rewritten by capweave executed with equivalent

behavior to programs instrumented manually by an expert,

and incurred sufficiently low runtime overhead that they are

still deployable: only 4% runtime overhead over unwoven

programs on realistic workloads. We have provided a Cap-

sicum virtual machine containing all programs and policies

used in our experiments.1

Organization: §II uses the wget downloader to

illustrate the Capsicum policy-weaving problem and

capweave. §III discusses the design of capweave in de-

tail. §IV presents an experimental evaluation of the correct-

ness and performance of capweave and programs rewritten

by applying capweave. §V discusses related work.

II. MOTIVATION

In this section, we motivate the Capsicum policy-weaving

problem, and illustrate our solution by describing how

capweave is used to secure the wget downloader.

1The virtual machine used is available at https://www.dropbox.com/s/
711q31mccz47rt4/capweave-exp-vm.tar.gz.

19

void wget(char* uls[], int num_urls) {
// For each URL input by the user:
for (int i = 0; i < num_urls; i++) {

C0: sync_fork();
L0: char* url_nm = urls[i];

// If the URL is an HTTP resource:
L1: if (is_http(url_nm)) {

// Open a socket to the server:
L2: int svr_sock = open_http(url_nm);

char* out_path = url_nm;
bool redir_url = false;
/* If server sends redirect
* with status 3xx: */

if (must_3xx_redirect(svr_sock)) {
redir_url = true;
/* Get the name of the output
* file from the server: */

L3: out_path = get_outnm(svr_sock);
}

L4: char* data = read_http(svr_sock);
C1: redir_url ? cap_enter() : ;
L5: write_data(out_path);

} else { ... }
C2: sync_join();

}
}

Figure 1. Pseudocode for the wget downloader, instrumented to invoke
Capsicum primitives. wget takes an array of URL’s as input, and writes
the data at each URL to the file system of its host. Particularly subtle
segments of wget’s code are annotated with comments, and discussed in
§II-A. Capsicum primitives are typeset in bold font.

A. wget: an Insecure Program and a Desired Policy

We now present a simplified version of the wget down-

loader and a desired security policy that past versions of

wget do not satisfy. The wget downloader is a command-

line utility that takes as input a list of URL’s. For each URL,

wget attempts to download the data addressed by the URL

and write the data in the host file system.

Pseudocode for a simplified version of wget is given

in Fig. 1. Important program points are annotated with C

labels (e.g., L0). (Statements in Fig. 1 in bold font are

invoked by a version of wget instrumented for Capsicum.

Such statements are discussed in §II-B; for now, assume that

wget does not execute such statements.) For each input

URL, wget determines under what protocol the URL is

addressed (Fig. 1, line L1). Once wget determines the

protocol used, it runs protocol-specific functions to (i) open a

socket to the server holding the URL (line L2), (ii) download

the data addressed by the URL over the socket (lines L3 and

L4), and (iii) write the data to a file in the file system (line

L5).

Unfortunately, versions of wget through v.1.12 include a

vulnerability that allows an attacker who controls a server

with which wget interacts to write data to any file on the

host file system that can be written by the user who runs

wget. The vulnerability is exposed when wget processes

a particular HTTP response from the server. In particular,

wget may receive from a server a redirect response, which

directs wget to download data from a different network

address. When wget receives such a response, it determines

the path in its host file system to which it will write data

directly from the information provided by the redirect server.

A malicious server can exploit this behavior to craft a

redirect response that causes wget to write data chosen

by the attacker to a path in the file system chosen by the

attacker [2].

Ideally, a wget developer would formally specify that

wget must not demonstrate a vulnerability along the lines

of the one described above, and would rewrite wget so that

it satisfies such a specification. However, rewriting wget to

do so requires detailed knowledge of both the structure of

wget and of the HTTP protocol. Thus, it would be useful if

a developer could define an acceptable, if perhaps weaker,

specification for wget in terms of commonly-used, well-

understood operating-system objects, such as file descriptors,

and automatically rewrite wget to satisfy such a policy. In

particular, one useful policy for wget defined in terms of

file descriptors would be:

Policy 1. When wget executes read_http, it should
always be able to open arbitrary files and sockets. But wget
should execute write_data with the ability to open files
if and only if it has not received an HTTP-redirect response.

B. Securing wget on Capsicum

The Capsicum operating system [10] provides a set of

powerful security-oriented system calls (i.e., primitives) that

an application can invoke to ensure that it only behaves

in a secure manner, even if an attacker triggers a serious

vulnerability in the application. Capsicum extends the notion

of a file descriptor provided by UNIX to that of a capability
by mapping each file descriptor opened by a process to a set

of access rights that the process holds for the file descriptor.

Each right corresponds roughly to the ability to perform a

UNIX system call that operates on a file descriptor (e.g., the

access right CAP_READ corresponds to the read system

call). When a process running on Capsicum invokes a system

call c on file descriptor f, Capsicum carries out c only if

the process holds the right CAP_C for f. Capsicum also

maps each executing process to an ambient-authority flag,

which is a Boolean value that controls whether the process

can open new file descriptors.

Capsicum’s capabilities were designed so that a program

executing on Capsicum begins by executing a small, trusted

code segment that manages capabilities, and then executes

complex, untrusted code that can interact with its environ-

ment only through the capabilities set by the trusted code.

When a process opens a file descriptor, it holds all access

rights for the descriptor. Throughout the process’s execution,

20

it can invoke a Capsicum primitive limitfd(d, R) on

descriptor d and set of rights R to decrease its rights for

d to only those in R. A process begins executing with

the capabilities of its parent, and can invoke the Capsicum

primitive cap enter to relinquish the ambient authority.

A programmer can instrument wget to invoke the Cap-

sicum primitives so that it satisfies Policy 1 (§II-A). One

correct instrumentation of the example wget is the code

shown in Fig. 1, including the Capsicum primitives shown

in bold font. Essentially, wget is instrumented so that if

it handles an HTTP redirection, then it invokes cap enter

before attempting to write data to its host’s file system (line

L5).

However, for a programmer to instrument his program

to invoke Capsicum primitives correctly, he must address

two challenges, illustrated by the instrumented version of

wget. First, once a programmer formulates a policy, he

must modify his program to invoke the Capsicum primitives

to enforce the policy. However, the Capsicum primitives

can have subtle consequences. In the example wget, once

the programmer determines that under some conditions,

wget should execute program point L5 without ambient

authority, then the programmer can immediately deduce

that wget must sometimes invoke the cap enter primitive

before executing L5. However, once the programmer also

determines that if wget does not receive a redirect response,

then wget should execute L5 with ambient authority, it is

fairly difficult for him to instrument wget. The difficulty

stems from the fact that once a process invokes cap enter,

then the process can never regain the ambient authority for

the remainder of its execution. Thus, if a wget process (i)

attempts to download from URL u, (ii) receives a redirection

response, and (iii) invokes cap enter, then the process

must execute without ambient authority when downloading

from all input URL’s following u.

wget can be instrumented to satisfy the full informal

policy of Policy 1 by compartmentalizing it to use multiple

communicating processes. A “main” wget process executes

the loop that iterates over the list of input URL’s. To

download data from each input URL, the main process

synchronously forks a worker process to download the data

and write it to the file system (line C0). Each worker

process begins executing with ambient authority. If the

worker receives an HTTP-redirect response while download-

ing from its URL, then it invokes cap enter, but when the

worker process terminates (line C1), the main wget process

continues to execute with ambient authority, with which it

forks the next worker process. (Capsicum requires that a

child process begin executing with the capabilities of its

parent, but places no restrictions on the capabilities of the

parent based on the capabilities of its children.)

Second, the instrumented program sometimes must update

and consult additional instrumentation state to determine

when to invoke Capsicum primitives. In Fig. 1, the instru-

let redir_exploit =
any_instr* . [L0] . any_instr*

. [L3] . [not L0]*

. [L5 with AMB] in
let noredir_fails =

any_instr* . [L0]
. [not { L0, L3 }]*
. [L5 with (no AMB)] in

let http_fails =
any_instr* . [L4 with (no AMB)] in
redir_exploit | noredir_fails | http_fails

Figure 2. A capweave policy for the example wget given in Fig. 1.
The policy is a regular expression that matches all undesired executions of
wget, and is described in §II-C.

mented wget maintains a Boolean variable redir_url
that reflects whether or not wget received a redirection

response when downloading from the current URL. The

instrumented wget invokes cap enter (line C1) if and

only if redir_url is true.

Thus, a program can be rewritten to satisfy strong se-

curity requirements while preserving the functionality of

the original program by correctly manipulating capabilities

across multiple communicating processes and maintaining

additional instrumentation state. However, it is non-trivial

to determine how to rewrite an application to do so. In

particular, the control locations at which an application must

invoke primitives to satisfy a policy might not be near each

other in the application’s code. For example, in Fig. 1, wget
invokes fork and cap enter at distant program points.

C. Securing wget on Capsicum with capweave

§II-A and §II-B illustrate the general challenges that a pro-

grammer faces in rewriting a program to execute correctly

on Capsicum. While a programmer can typically define the

desired behavior of his rewritten program purely in terms

of capabilities (e.g., Policy 1), Capsicum does not allow

the programmer to state such a policy explicitly. Instead,

the programmer must instrument his program manually

to invoke primitives that manipulate both capabilities and

processes so that the resulting program executes with the

desired capabilities. To help a programmer address this

challenge, we have developed a Capsicum policy weaver,

called capweave. capweave takes as input from the pro-

grammer (1) a program that invokes no Capsicum primitives

(for the example wget, the code in Fig. 1 without the

instrumentation statements), and (2) a policy, which is a

regular language of capability traces that each constitute a

policy violation. A capability trace is a sequence of program

points paired with the capabilities that the program has when

it executes each program point.

A capweave policy that formalizes Policy 1 is given

in Fig. 2. The language of violations in Fig. 2 is defined

as the union of three sublanguages: redir_exploit,

21

noredir_fails, and http_fails. redir_exploit
formally expresses the set of all wget executions in which

an attacker exploits wget’s vulnerability in processing

HTTP redirection responses. redir_exploit is defined

as any sequence of instructions, followed by the program

point at which the next URL in the array of inputs is

selected (L0), followed by any sequence of instructions,

followed by the program point at which wget processes

an HTTP redirect response (L3), followed by any sequence

of instructions before the selection of the next input URL

(not L0), followed by wget writing downloaded data to

the file system (L5) with ambient authority.

noredir_fails formally expresses the set of all wget
executions in which wget does not receive an HTTP

redirection response, but attempts to write downloaded data

to the file system with insufficient rights. noredir_fails
is defined as any sequence of instructions, followed by L0,

followed by any sequence of instructions other than L0 or

L3, followed by executing L5 with ambient authority.

http_fails formally expresses the set of all wget
executions in which wget attempts to finish an HTTP

session with insufficient rights. http_fails is defined

as any sequence of instructions followed by attempting to

complete the HTTP protocol (L4) without ambient authority.

For the simplified version of wget given in Fig. 1, the

accompanying capweave policy given in Fig. 2 is almost as

large as the program itself. However, in practice, policies for

real-world programs tend to grow very slowly in the size of

the program. The real wget program contains 64,443 lines

of source code, but its entire policy can be expressed in only

35 lines of our policy language.

capweave outputs a version of the input program in-

strumented to invoke Capsicum primitives so that it satisfies

the input policy. From the uninstrumented version of the

example wget (i.e., Fig. 1 without the instrumentation state-

ments) and the example policy given in Fig. 2, capweave
outputs the correctly instrumented version of wget (Fig. 1

with the instrumentation statements).

D. capweave Parametrized on the Capsicum Semantics

The implemented version of capweave is actually struc-

tured slightly differently than described above: the im-

plemented tool supports a more general model in which

capweave is generated from an explicit description of

the semantics of Capsicum [15]. Because of this model,

capweave can be adapted easily when Capsicum is ex-

tended or when the “packaging” of sequences of invocations

of Capsicum primitives as a library API is changed.

The Capsicum semantics defines (i) the state maintained

by Capsicum as a program executes, (ii) the set of primitives

that an instrumented program can invoke, and (iii) the

effects of each primitive on the Capsicum state. In the

current implementation of capweave, the state maintained

by Capsicum is a stack of process states, where a process

state is (a) a map from each descriptor to its current set of

access rights, and (b) a Boolean value indicating whether the

process has ambient authority. If a process state p0 is below a

process state p1 on the stack, then the process whose state is

p0 spawned the process whose state is p1 via a synchronous

fork. The semantics also defines the effect of each primitive

on the Capsicum state. For instance, cap enter sets the

Boolean value to False in the process state of the currently

executing process (i.e., the top process on the stack); fork

pushes a copy of the top process state onto the stack; join

pops the top process state from the stack; etc.

It is significantly easier for a Capsicum architect to

define a model of Capsicum using this mechanism than it

would be for him to implement the entire policy weaver.

capweave consists of 35k lines of OCaml that employs

many subtle optimizations, whereas the Capsicum model

is specified in only 3k lines, which essentially define a

Capsicum interpreter. (The Capsicum state and interpretation

functions are discussed in more detail in §III-A3.)

In general, the Capsicum semantics would be speci-

fied by a Capsicum architect, rather than an application

implementer, and would be changed rarely—either when

new Capsicum primitives are introduced or when there are

changes in the API of a library that packages Capsicum calls

into routines that are more convenient to use than “raw”

Capsicum. Application programmers can then regenerate an

updated capweave tool and weave policies into as many

applications as they wish.

III. DESIGN OF THE POLICY WEAVER

A. The Policy-Weaving Problem

1) Language Syntax: The syntax of languages of both

unwoven and woven programs will be defined as instances

of a language of simple imperative programs, IMP. IMP

is a small “core” language that supports only updates to

program state with the result of language operations, opera-

tions on descriptors, invocations of woven instructions, and

conditional branches of control-flow. However, the actual

implementation of capweave instruments programs in the

LLVM intermediate language [16], and thus can weave

programs compiled from widely-used, practical languages,

such as C and C++.

Syntax of Unwoven Programs: The syntax of language

IMP〈wvinstrs〉 (Fig. 3) is defined for a fixed set of program

variables Vars, a fixed set of control labels Labels, and a set

of open sites Opens that label program instructions at which

descriptors are opened. The syntax is parametrized on a set

of woven instructions wvinstrs (i.e., security primitives). An

IMP program prog is a set of instruction blocks, including an

initial instruction block block0. Each instruction block is a

unique label, a statement, and a block-terminator instruc-

tion. A statement either assigns the result of a language

operation to a variable, opens a descriptor, or executes a

weaving instruction. A block terminator halts the program

22

prog := (block0, {block1, . . . , blockn})
block := LABEL : stmt; termin

stmt := v0 := op(v1, . . . , vn) vi ∈Vars
| dscinst
| wvinstrs

termin := halt | br v ? LABELt : LABELf v ∈Vars
dscinst := os : v0 := open(v1),

v0, v1 ∈ Vars, os ∈ Opens

Figure 3. Syntax of the IMP〈wvinstrs〉 language: an imperative language
parametrized on a set of woven instructions wvinstrs.

capinstr := v0 := op(v1, . . . , vn) vi ∈WVars

| v ? capprim v ∈WVars

capprim := cap enter

| limitfd(os, rs) os ∈ Opens, rs ⊆Rights
| fork
| join

Figure 4. Syntax of the set of Capsicum woven instructions capinstr.

or branches. The language of unwoven programs UNWOVEN

is the language of imperative programs with no woven

instructions: UNWOVEN = IMP〈∅〉.
Syntax of Woven Programs: The language of woven

programs is the language of IMP programs that may execute

Capsicum woven instructions (Fig. 4), defined over a set of

weaving variables WVars. A Capsicum woven instruction

may assign the result of a language operation to a variable in

WVars, or may execute a guarded invocation of a Capsicum
primitive. A Capsicum primitive is either cap enter, fork,

join, or limitfd(os, rs), for os ∈ Opens and rs ⊆ Rights.
A woven program is an IMP program instrumented to

execute Capsicum instructions: WOVEN = IMP〈capinstr〉.
2) Language Semantics: In this section, we define a

semantics of WOVEN programs by mapping each WOVEN

program to the executions that it may perform. In particular,

we define a semantic function τ that maps every WOVEN

program P and initial program state p to the trace of

capabilities that P holds throughout its execution from p.

τ is defined using an operational-semantic function σs that

describes how each program statement updates the state of

the program. σs is defined using the operational-semantic

function σw, which define how each weaving instruction

updates the program state. σw is defined using the Capsicum
interpretation of Capsicum primitives, which defines how

each primitive updates the state maintained by Capsicum

(§III-A3).

The semantics of WOVEN, given in Fig. 5, is defined

by a function τ (Fig. 5, Eqns. (1) and (2)) that maps

each program in WOVEN and initial program state p to

the sequence of capabilities that the program holds during

an execution that starts from p. Let a program state be an

assignment from each program variable to an integer value:

progstates = Vars→ Z, where Z denotes the set of integers.

A capability state is the state maintained by the Capsicum

operating system. The set of capability states capstates
is defined by the Capsicum architect (see §III-A3). Let a

capability trace be a sequence of program labels paired with

the capabilities that the program has as it executes the block

with the given label: captraces = (Labels × capstates)∗.

τ maps each program P ∈ WOVEN and program state

p ∈ progstates to the capability trace that P generates in

an execution that starts from p (Fig. 5, Eqn. (1)). The trace

generated by P from a program state p is the trace that the

initial block of P generates in an execution that starts from

p, along with a fixed initial woven state and capability state

(Fig. 5, Eqn. (2)).

The semantic function τb, given in Fig. 5, Eqns. (3)

and (4), defines the capability trace that a block generates

in an execution from a given state. Let a woven state be

a map from each weaving variable to an integer value:

wvstates = WVars → Z. Let a full state be a program-

state, woven-state, and capability-state triple: fullstates =
progstates × wvstates × capstates. Then τb defines the

capability trace generated by executing a given block from

a given full-state (Fig. 5, Eqn. (3)). The trace generated by

executing a block LABEL : s; t from a full state f is LABEL

paired with the capability state in f , followed by the trace

generated by executing the terminator instruction t starting

in the full-state obtained by updating f with the statement

s (Fig. 5, Eqn. (4)).

The terminator semantic function τt, given in Fig. 5,

Eqns. (5)–(7), defines the trace generated by executing a

block terminator from a given full-state f ∈ fullstates. The

terminator halt generates the empty trace (Fig. 5, Eqn. (6)).

The terminator br v ? LABELt : LABELf generates the trace

obtained by executing either the block labeled LABELt or

the block labeled LABELf from full-state f , depending on

whether v’s value is non-zero or zero, respectively (Fig. 5,

Eqn. (7)).

The statement semantic function σs, given in Fig. 5,

Eqns. (8)–(11), defines how a statement s ∈ stmt updates

a full-state f ∈ fullstates. If s is an assignment, then it

updates the program state in f according to the seman-

tics of the right-hand-side operation (Fig. 5, Eqn. (9)). In

Eqn. (9), the language semantics is denoted by the function

ιo : stmt → progstates → progstates, and omitted for

brevity. If s is a descriptor instruction, then it updates the

program and capability state in f according to the Capsicum

interpretation of descriptor instructions ιd (Fig. 5, Eqn. (10);

for a discussion of ιd, see §III-A3). If s is a weaving

instruction, then it updates the weaving and capability state

in f as defined by the weaving-instruction semantic function

σw (Fig. 5, Eqn. (11)).

23

τ : WOVEN → progstates→ captraces (1)

τ�(block0, {block1, . . . , blockn})�(p) = τb�P, block0�(p, ∅, ci) (2)

τb : (WOVEN × block)→ fullstates→ captraces (3)

τb�P, LABEL : stmt; termin)�(p, i, c) = (LABEL, c) :: τt�P, termin�(σs�stmt�(p, i, c)) (4)

τt : (WOVEN × termin)→ fullstates→ captraces (5)

τt�P, halt�(p, i, c) = ε (6)

τt�P, br v ? LABELt : LABELf �(p, i, c) = let dest = if p(v) �= 0 then LABELt else LABELf in

τb�labelblkP (dest)�(p, i, c) (7)

σs : stmt→ fullstates→ fullstates (8)

σs�v0 := op(v1, . . . , vn)�(p, i, c) = (ιo�v0 := op(v1, . . . , vn)�(p), i, c) (9)

σs�dscinst�(p, i, c) = let (p′, c′) = ιd�dscinst�(p, c) in (p′, i, c′) (10)

σs�capinstr�(p, i, c) = σw�capinstr�(i, c) (11)

σw : capinstr→ (wvstates× capstates)→ (wvstates× capstates) (12)

σw�v0 := op(v1, . . . , vn)�(i, c) = (ιo�v0 := op(v1, . . . , vn)�(i), c) (13)

σw�v ? capprim�(i, c) = (i, if i(v) �= 0 then ιp�capprim�(c) else c) (14)

Figure 5. Semantics of WOVEN. τ , τb, and τt define the capability trace that a WOVEN program generates by executing a given program, block, or
terminator instruction, respectively, from a given state. In the definition of τt, labelblkP maps each label to the instruction block that it labels. σs and
σw define how a program statement and woven instruction, respectively, update the state of a program. ιo and ιp denote the interpretation of program
operations and Capsicum primitives (Fig. 6), respectively). progstates, wvstates, capstates, and fullstates denote the spaces of program states, woven
states, capability states, and “full” program states, respectively (see §III-A2).

The woven-instruction semantic function σw, given in

Fig. 5, Eqns. (12)–(14), defines how a woven instruction

v ∈ wvinstrs updates a woven state w ∈ wvstates and a

capability state c ∈ capstates. If v stores the value of a

language operation in a woven-state variable, then the woven

state is updated according to the language semantics (Fig. 5,

Eqn. (13)). If the woven instruction is a guarded Capsicum

primitive v ? p, then if v is zero in w, v ? p does not update

the woven state, and otherwise, v ? p updates c according to

the Capsicum interpretation of primitive p (Fig. 5, Eqn. (14);

for a discussion of the interpretation of primitives ιp, see

§III-A3).

3) Capsicum Interpretation Functions: The semantics of

WOVEN (§III-A2) is defined from (1) the space of capability

states maintained by Capsicum, (2) the initial capability

state with which a program executes, and (3) the Capsicum

interpretations, which define how program instructions and

Capsicum primitives update capability states. If the se-

mantics of Capsicum were to be extended or revised in

some way, these are the only pieces of information that

a Capsicum architect would have to modify to obtain an

updated version of capweave.

A capability state defines what capabilities are held by

a program (Fig. 6, Eqns. (15) and (16)). Let a process
capability state be a Boolean, denoting whether a process

has ambient authority, together with a map from each

descriptor to a set of rights (Fig. 6, Eqn. (15)). A capability

state is a stack of process capability states (Fig. 6, Eqn. (16)).

The initial capability state ci is a singleton stack contain-

ing a process state denoting that the process has ambient

capability, and that the rights of no descriptors are defined:

ci = [(True, ∅)].
The Capsicum interpretation functions are given in Fig. 6.

The first interpretation function ιd defines how each descrip-

tor instruction i ≡ d: x := open(y) (Fig. 6, Eqns. (17)

and (18)) updates a program state p ∈ progstates and

capability state c ∈ capstates (Fig. 6, Eqn. (17)). If the

program holds ambient authority in c, then i updates p so

that x holds a fresh descriptor, and updates c so that the fresh

descriptor has all access rights. Otherwise, i updates p so that

x holds the value −1, and the latest descriptor opened at d
is not mapped to any set of access rights (Fig. 6, Eqn. (18)).

The second interpretation function ιp (Fig. 6, Eqns. (19)

and (20)) specifies how a Capsicum primitive p ∈ Capprims
updates a capability state c ∈ capstates (Fig. 6, Eqn. (19)).

If a program executes cap enter, then the program relin-

quishes ambient authority (Fig. 6, Eqn. (20)). If a program

invokes limitfd(d, R), then the program’s rights for the

last descriptor opened at d are updated to the intersection

of the program’s rights in c and the set of rights R (Fig. 6,

Eqn. (21)). If a program invokes fork, then the program

pushes a copy of the current process-capability state onto

the stack of process capability states (Fig. 6, Eqn. (22)).

If a program invokes join, then the program pops its top

process capability state pc, and updates the new top process

state in its capability state to have the descriptor rights in

pc (Fig. 6, Eqn. (23)).

Policy Semantics of WOVEN: A policy is a set of exe-

cutions of a program annotated with the capabilities that the

program must have as it executes. Although the capability

24

proccap = B× (Opens→ P(Rights)) (15)

capstates = proccap∗ (16)

ιd : dscinst→ (progstates× capstates)→ (progstates× capstates) (17)

ιd�d : x := open(y)�(p, r :: rs) = let (fd,R′) = if ambcap(r) then (fresh(r),Rights) else (−1,⊥) in

(p[x �→ fd], (ambcap(r), rights(r)[d �→ R′]) :: rs) (18)

ιp : capprim→ capstates→ capstates (19)

ιp�cap enter�(r :: rs) = (False, rights(r)) :: rs (20)

ιp�limitfd(d,R)�(r :: rs) = (ambcap(r), descrights(r)[d �→ rs(r)(d) ∩R]) :: rs (21)

ιp�fork�(r :: rs) = r :: r :: rs (22)

ιp�join�(r :: r′ :: rs) = (ambcap(r′), descrights(r)) :: rs (23)

Figure 6. Definition of the space of capability states and interpretation functions. proccap denotes the space of process states. In Eqn. (16), P(Rights)
denotes the power set of Capsicum access rights. capstates denotes the space of capability states. ιd and ιp denote the interpretations of descriptor
instructions and Capsicum primitives, respectively. In Eqns. (18), (21), and (23), ambcap(r) and descrights(r) denote the ambient-authority flag and map
from descriptors to access rights, respectively, in process state r. In Eqn. (18), fresh(r) denotes a new descriptor value that is not bound in process state r.

state of a program completely defines the capabilities held

by a program as it executes, writing policies defined by the

complete capability-state may be complicated or infeasible.

In particular, the Capsicum interpretation functions in Fig. 6

are defined over capability states that are stacks of process

capability states, but practical policies are typically defined

over only the currently executing process (i.e., the top

process on the stack of process capability states).
To bridge the gap between the capability state maintained

by Capsicum and the state used to define policies, the

Capsicum architect defines a space of policy states polstates
and a policy-state abstraction α : capstates→ polstates that

maps each capability state to the policy state that represents

it. Our implementation of capweave allows policies to

be defined using the capabilities of the currently executing

process: polstates = proccap, and α(cur :: procs) = cur.
A policy-state abstraction α defines a policy-semantics

function that maps each woven program and initial program

state to the trace of program labels paired with policy states

that the program generates in an execution from the initial

program state. For poltraces = (Labels × polstates)∗, the

policy semantics function τα : WOVEN → (progstates →
poltraces) is

τα�prog�(p) = mα(τ�prog�(p))

where

mα(ε) = ε

mα((LABEL, c) :: t) = (LABEL, α(c)) :: mα(t)

4) Problem Definition: The policy-weaving problem is

to take an unwoven program and a policy, and weave

the program to satisfy the policy. We formally define the

weaving problem using the policy semantics of a program

and the definition of a weaving. To simplify the definition

of the policy-weaving problem, we fix the definition of the

Capsicum interpretation functions, initial state, and policy-

state abstraction to be as defined in Fig. 6 and §III-A2. The

definition of the program and policy semantics of WOVEN

programs is thus fixed as well.

For an unwoven program P ∈ UNWOVEN and a woven

program P ′ ∈ WOVEN, P ′ is a weaving of P if P ′ is

constructed by only adding woven instructions to P .

Defn. 1. For IMP statements s and s′, s′ is a weaving of s
if one of the following holds:

• s is not a sequence of statements, and (1) s′ = s or (2)
s′ = s′0; s

′
1 and either s′0 is a weaving of s and s′1 is a

sequence of woven instructions, or s′0 is a sequence of
woven instructions and s′1 is a weaving of s.

• s is a sequence of statements s0; s1 and s′ is a sequence
of statements s′0; s

′
1 where s′0 is a weaving of s0 and

s′1 is a weaving of s1.

A program P ′ = (block′0, {block′1, . . . , block′n}) is a weav-

ing of a program P = (block0, {block1, . . . , blockn}) if
for each 0 ≤ i ≤ n, blocki = LABELi : si; ti and
block′i = LABELi : s

′
i; ti, where s′i is a weaving of si.

The policy-weaving problem is to take an unwoven pro-

gram and a policy defining the allowed executions of the

program, and instrument the program so that it satisfies the

policy.

Defn. 2. Let P ∈ UNWOVEN be an unwoven program, and
let Q ⊆ captraces be a regular language of capability traces.
For a woven program P ′, let the traces of P ′, denoted as
T (P ′) ⊆ captraces, be the set of capability traces generated
by some input to the program: T (P ′) = {τα�P ′�(i) | i ∈
(Vars → Z)}. A solution to the policy-weaving problem
WEAVE(P,Q) is a woven program P ′ ∈ WOVEN such that
P ′ is a weaving of P (Defn. 1) and T (P ′) ⊆ Q.

WEAVE is undecidable in general; it can be shown that

any algorithm that could solve WEAVE could decide if a

program in a Turing-complete language satisfies an arbitrary

safety property. capweave uses a sound but incomplete

25

solver for WEAVE, described in §III-B.

B. Solving the Policy Weaving Problem via Automata Games

capweave reduces WEAVE to finding a winning strategy

to a two-player safety game, played by an Attacker and a

Defender. capweave uses an existing automata-theoretic

weaver-generator algorithm [15] as its core engine. To

make the paper self-contained, this section summarizes that

algorithm, and describes how capweave applies the weaver

generator to weave practical programs for Capsicum.

The weaver generator solves a version of the policy-

weaving problem in which an input program, a policy, and

the operating system are all modeled as automata. The

weaver generator solves such a problem by reducing it to

finding a modular winning strategy to a two-player safety
game. Intuitively, a two-player safety game is an automaton

in which the set of states is partitioned into a set of Attacker

states and a set of Defender states. When the game is in an

Attacker state, the Attacker can transition the state to any

adjacent state, and analogously for the Defender. The goal

of the Attacker is to eventually transition the game to an

accepting state, and the goal of the Defender is to prevent

the Attacker from doing so. A winning Attacker (Defender)
strategy is a function that reads the transitions chosen by

both the Attacker and Defender and outputs a transition for

the Attacker (Defender) such that if the Attacker (Defender)

always chooses the transition output by the strategy, then

the Attacker (Defender) always wins the game. For a game

defined by a pushdown automaton, a modular Attacker

(Defender) strategy is a strategy that chooses transitions

independently from the transitions chosen before the most

recent unmatched push transition. If a game defined by

a restricted classes of pushdown automata, called Visibly
Pushdown Automata (VPA) [17], has a winning modular

Attacker or Defender strategy, then the strategy can be found

efficiently [14].

Our policy weaver capweave soundly reduces a policy-

weaving problem WEAVE(P,Q) to the problem of finding a

winning Defender strategy to a game defined by a VPA.

Intuitively, capweave constructs a game in which the

choices of an Attacker correspond to instructions that a

program can execute, the choices of a Defender correspond

to Capsicum primitives that can be invoked, and accepting

states are reached when the program violates the policy. A

winning Defender strategy for the game thus corresponds

to a weaving that ensures that the woven program never

violates the policy. The problem of finding a winning

Defender strategy is NP-complete in general, but in practice

capweave finds a winning strategy to a game efficiently

by applying heuristics introduced in previous work ([15],

Sec. 4).

Fig. 7 illustrates how capweave applies the weaver

generator. The weaver generator takes as input a program

and policy, both represented as VPA’s, and an operating

�������	
���
��

������	
���

������	
	�������

�������	
	�������

������
���

������
���������

������
���

������������	
������		���

�������	
���

������	��������
�����

����
����

������
������	

��������

�������	
���

���
���	
���
�	�
��
�
��
�����������

Figure 7. Architecture of capweave. Items in the box labeled “Capsicum
Arch.” are defined by the Capsicum architect. “Init. state” denotes the initial
Capsicum state, “Desc. interp.” denotes the interpretation of Capsicum
program statements, “Prim. interp” denotes the interpretation of Capsicum
primitives, and “Policy abs.” denotes the policy abstraction.

system (e.g., Capsicum) modeled as a visibly-pushdown

transducer. Thus, to apply the weaver generator, capweave
must soundly model its input program, policy, and Cap-

sicum as VPA’s. capweave models the program as a

VPA constructed directly from the program’s interprocedural

control-flow graph, which is a standard technique in program

analysis [17]. However, in principle, the program can be

modeled by any VPA that overapproximates the possible

executions of the program (e.g., models constructed via

predicate abstraction [18]). Each policy that capweave
takes as input is a regular language, so the policy can

be represented as a finite-state automaton, and thus as a

visibly-pushdown automaton [17]. capweave constructs

the transducer model of Capsicum from the space of capa-

bility states and Capsicum interpretations (§III-A3). Details

of this construction are given in an extended version of this

paper [19].

The weaver generator produces an instrumentation strat-

egy represented as a transducer that reads a sequence of pro-

gram instructions and outputs the next Capsicum primitive

that a woven program should execute. capweave compiles

such an instrumentation transducer to a woven program by

representing the transition function of the instrumentation

transducer using a state variable and instructions in the

language capinstr (Fig. 4). capweave weaves the input

program to consult the state variable to determine which

Capsicum primitive to invoke next as the program exe-

cutes, and then update the state variable. This compilation

scheme is described further in the extended version of this

paper [19].

If a programmer provides a program P and policy Q for

26

which capweave cannot find a solution to WEAVE(P,Q),
then capweave can, in principle, provide useful diagnostic

information to the programmer. There are multiple reasons

why capweave may not be able to find a solution to a

weaving problem WEAVE(P,Q): (1) WEAVE(P,Q) may not

have a solution. (2) WEAVE(P,Q) may have a solution, but

capweave may not find a solution because either (a) when

capweave constructs a VPA model of P , the resulting

model allows P to perform more executions than P can

actually perform, or (b) the solution does not correspond

to a modular winning Defender strategy [15]. In all cases

except (b), the weaver generator produces a winning Attacker
strategy that describes the executions that P can perform

to violate Q, no matter what Capsicum primitives are

invoked by any weaving. From such an Attacker strategy

and the Capsicum semantics, capweave could construct

an unweavable policy Q′ that is no more restrictive than Q
(i.e., Q′ ⊇ Q). capweave could then either validate that

Q′ is truly unsatisfiable and provide Q′ to the user as an

explanation of capweave’s failure, or use Q′ to refine its

model of the input program. In case (b), capweave could

still apply various heuristics to iteratively weaken the input

policy, check if the weakened policy has a weaving, and

provide this information as diagnostics to the programmer.

We have not implemented support for handling failures in

capweave, and do not evaluate capweave’s usability

in the face of such failures. We plan to explore failure

diagnostics in future work.

C. Weaving Practical Programs

In §III-A4, we defined the policy-weaving problem for a

simple imperative language. However, the weaving problem

and our policy weaver can be extended to handle programs

written in practical programming languages, such as C, in

which programs may have multiple recursive procedures, or

manipulate compound datatypes. In particular, capweave
weaves programs in the LLVM intermediate language [16].

A key strength of Capsicum is that a program that runs

on Capsicum may run code injected by an attacker (e.g.,

via a stack-smashing attack [20]), and yet can still satisfy

a non-trivial security policy. Thus, in practice it is critical

that our policy weaver be able to correctly weave programs

that can run injected code. We could implement such a

weaver by extending the language semantics and policy-

weaving problem described in §III-A2 and §III-A4 in a

straightforward way. The only change we would need to

make is that the policy weaver would not be able to choose

what Capsicum primitives the woven program will execute

after it executes specified program points at which the

program might run injected code.

A programmer who uses capweave must understand his

program sufficiently well to define a correct policy in terms

of program actions paired with capabilities. Furthermore, in

practice, the size of a policy may not differ significantly

from the size of the code required to instrument the policy.

However, the key utility of capweave is that it allows

the programmer to reason purely in terms of capabilities

that the program must hold over its execution. Because

a programmer’s ultimate goal is to write a program that

holds desired capabilities, this reasoning is strictly easier

than determining desired capabilities and then rewriting the

program to use the intricate Capsicum primitives to induce

the capabilities.

More sophisticated programming tools could further ease

the burden of using capweave by, e.g., inferring a likely

policy from the callsites of system calls that manipulate

descriptors. Such a tool need only determine the capabilities

that the program requires as it executes, and discharge to

capweave the problem of instrumenting the program to

hold the required capabilities. To evaluate fully the utility of

capweave and related tools would require a comprehensive

programmer study. We leave this as future work.

IV. PRACTICAL EXPERIENCE AND EXPERIMENTS

We carried out a set of experiments to evaluate the prac-

tical utility of capweave. The experiments were designed

to answer the following questions:

1) Does capweave allow a programmer to rewrite a

program with less effort and with higher assurance

than if he manually rewrote the program to invoke

Capsicum’s primitives?

2) Does capweave rewrite real-world programs to en-

force practical policies efficiently?

3) Do programs produced by capweave behave compa-

rably, both in terms of correctness and performance,

to programs manually modified by an expert to satisfy

the same policy?

To answer these questions, we applied capweave to a set

of UNIX utilities—all of which had previously demonstrated

security vulnerabilities—so that the instrumented program

satisfied a policy that thwarted the vulnerabilities. The

programs and policies were derived from either previous

work done in developing Capsicum [10], discussions with

Capsicum system and application developers on the Cap-

sicum mailing list [13], or collaborative work with security

researchers at MIT Lincoln Laboratory (MITLL).

The capweave implementation is 35k lines of OCaml,

and uses the LLVM OCaml API, which corresponds closely

to the LLVM API provided for C and C++. capweave takes

as input programs in the LLVM intermediate representation

(called bitcode), and outputs instrumented programs as bit-

code as well. As a result, it can be inserted into any compiler

toolchain that compiles a source program to LLVM bitcode

in some intermediate phase.

capweave generates instrumentation code as a multi-

dimensional array that defines what Capsicum primitive

should be called as each program point is executed. While

the generated code likely cannot be understood easily by a

27

programmer, the instrumentation transducer (§III-B) can be

recovered from the generated array. The transducer could

perhaps be used by a programmer to more easily understand

the instrumentation.

The results of our experiments demonstrate that

capweave is useful for rewriting programs for Capsicum.

In particular:

1) For each of our subject programs, a programmer could

apply capweave by annotating their program with

only 4–11 lines of code, and writing a policy, ex-

pressed purely in terms of Capsicum capabilities, that

could be represented with 35–114 lines of our policy

language. Thus, capweave can be applied to rewrite

programs to satisfy explicit, declarative policies with

minimal effort.

2) capweave wove all programs in less than five min-

utes, except for the PHP CGI interpreter, which took

46 minutes Thus, capweave is efficient enough to

be applied to programs in, say, a nightly build system,

and in many cases could be integrated into a compiler

toolchain used in an edit-compile-run cycle.

3) Programs rewritten by capweave to satisfy a given

policy match programs manually written by an ex-

pert to satisfy the same policy, and run with over-

head within 4% of unwoven programs on practical

workloads. Thus, in practice, capweave produces

programs that behave comparably to those written by

an expert programmer.

A. Methodology

To answer the experimental questions presented in §IV,

we applied capweave to weave a set of UNIX utilities

as security and performance benchmarks. In this section,

we describe each of the benchmarks, and then describe the

experiments that we performed on each benchmark.

1) Benchmark Programs and Policies: We now describe

each of the benchmark programs and policies used, including

its role as a security-critical application, and the source of

its policy. While each policy used was inspired by a known

vulnerability in the benchmark, each policy restricts the

capabilities of large portions of its program’s execution. For

example, the policies for bzip2 and gzip strongly limit

the capabilities of both programs while they execute their

compression and decompression functions. Each policy thus

potentially mitigates a large class of vulnerabilities that may

be unknown when the policy was written. The policy also

explicitly describes the limitations of any program rewritten

to satisfy the policy, and thus the limits on any attacker who

compromises the rewritten program.

bzip2 and gzip: The compression programs bzip2
and gzip can be used by a trusted user to compress data

from an untrusted source. On BSD systems, they are often

used by root to decompress application packages. The

compression and decompression functions of bzip2 and

gzip are heavily optimized and quite complex, and have

exhibited security vulnerabilities in the past [3], [4]. An

attacker who can control the inputs to bzip2 and gzip
can craft an input that allows him to execute arbitrary code

with the privileges of the user who invoked bzip2 or gzip.

We defined a capweave policy that strictly limits the

abilities of an attacker who compromises bzip2 or gzip.

The policy restricts bzip2 and gzip to execute with

only the capability to read from the source file that holds

uncompressed data and write to the file opened to store the

compressed output. An attacker who compromises a version

of bzip2 or gzip that satisfies such a policy can compro-

mise the integrity of the output files of bzip2 or gzip,

but cannot carry out other malicious actions. For instance,

the attacker cannot overwrite arbitrary files. Our capweave
policies for bzip2 and gzip were inspired by previous

work on manually writing programs for Capsicum [10], [21].

php-cgi: Executing programs written in web script-

ing languages, such as PHP, raises multiple security issues.

First, analyzing, monitoring, and restricting the behavior

of a program written in a scripting language is inherently

difficult. Second, a maliciously-crafted web program can

potentially compromise the interpreter that executes it, and

then perform any action on its host system that is allowed

for the user who launched the interpreter [5].

We defined a capweave policy for the PHP CGI inter-

preter php-cgi that allows the interpreter to only read from

and write to files defined by a small set of simple, easily-

audited checking functions. Our policy strictly limits the file

I/O of php-cgi itself, and thus indirectly limits the I/O of

any PHP script that the interpreter executes. We defined the

policy by collaborating with a group of researchers from

MITLL.

tar: The tar archiving utility archives sets of files

into a single file. Unfortunately, past versions of tar have

contained vulnerabilities that allow an attacker who controls

the inputs to tar to run injected code with the privileges

of the user who invoked tar [6], [7].

We defined a capweave policy that strictly limits the

abilities of an attacker who compromises tar. The policy

restricts tar to execute vulnerable functions without am-

bient authority. An attacker who compromises a version of

tar that satisfies such a policy can compromise the integrity

of output files opened by tar, but cannot carry out other

malicious actions.

tcpdump: tcpdump is a widely-used network-facing

application that historically has been the target of many

exploits. tcpdump takes as input a Berkeley Packet Filter

(BPF), and a device from which to read packets. In a correct

execution, it reads packets from the device, matches them

against the input BPF, and if the packet matches, prints

the packet to standard output. Unfortunately, the packet-

matching code in tcpdump is complex; in previous versions

of tcpdump, an attacker who controls the network input to

28

tcpdump can craft a packet that allows him to take control

of the process executing tcpdump [1].

We defined a capweave policy for tcpdump that

strictly limits the power of an attacker who is able to

compromise tcpdump. In previous work on Capsicum [10],

the Capsicum developers instrumented tcpdump so that

it could only read from its input network device and

write to standard output. The Capsicum developers later

found through testing that this instrumentation did not allow

tcpdump to resolve network addresses in a packet, and the

developers revised the instrumentation of tcpdump so that

only a small, trusted DNS resolver could open files. The

capweave policy for tcpdump describes the policy that the

revised instrumentation satisfies.

wget: The wget downloader, its vulnerabilities,

and its capweave policy were discussed in §II. Our

policy for wget was inspired by discussion on the

Capsicum-developer mailing list and known vulnerabilities

of wget [2], [13].

B. Experimental Procedure

For each of the benchmark programs and policies de-

scribed in §IV-A1, we defined the benchmark’s policy in

the capweave policy language, and applied capweave to

the program and policy. We also obtained a version of each

program that was manually modified to satisfy the policy. In

previous work, the Capsicum developers manually rewrote

bzip2, gzip, and tcpdump to satisfy informal versions

of the policies described in §IV-A1. We recompiled these

versions with the LLVM compiler so that we could compare

their runtime overhead with the runtime overhead of the pro-

grams woven by capweave. We manually instrumented the

other three benchmarks to satisfy each of their policies. The

woven and manually instrumented programs were compiled

with the default optimization of each benchmark (“-O2” for

each program). capweave was applied to optimized LLVM

bitcode.

We ran bzip2, gzip, php-cgi, tcpdump, and wget
on the test workloads included in the source distribution of

each program. We ran tar to archive its own source direc-

tory. We ran each original benchmark, woven benchmark,

and manually rewritten benchmark on the benchmark’s test

suite, and compared the executions. In particular, we counted

the number of tests that each of the benchmark programs

passed, and measured the runtime performance overhead of

the rewritten programs compared to the original benchmark.

Because the total time taken by each benchmark on the

test workloads supplied with the source was often less than

a second, we also measured performance on larger, more

realistic workloads.

To validate that the woven programs mitigated attacks

according to their policy, we introduced into each program a

“backdoor” that attempted to carry out an attack disallowed

by the program’s policy. We then ran the woven program on

an input that triggered the backdoor, and observed that the

goal of the attack was not achieved.

C. Analysis of Results

The results of our experiments are given in Tab. I.

(The performance numbers reported in Tab. I are from the

test workloads included in the source distribution of each

program. Performance on larger, more realistic workloads

is discussed below.) For each benchmark, Tab. I contains

three groups of measurements of our experience weaving

the benchmark. The first group (cols. 3–5) measures the

complexity of the policy for which the benchmark was

woven, and contains the number of lines of code in which

each policy is represented in our policy language, as well

as the size of the policy DFA constructed by capweave.

The number of lines of policy-language code (“Lines”)

indicates that the policy language supported by capweave
can express practical policies concisely.

The second group of measurements in Tab. I (cols. 6–7)

measures the performance of capweave, and contains the

time and peak memory used by capweave. Each bench-

mark was woven on a server that has sixteen 2.4 GHz cores

and 32 GB of memory, although the capweave implemen-

tation executes sequentially. The running time (cf. “Weaving

Time”) and peak memory (cf. “Weaving Mem.”) indicate

that capweave could be included in the edit-compile-run

toolchain of many programs of small-to-medium size, and

could be included in the nightly build system of a program of

large size. The running time and peak memory also indicate

that the performance of capweave is strongly determined

by the size of the policy, in particular the size of the policy-

automaton alphabet, more than the size of the input program

(cf. “States”, “Alpha. Size”, “Weaving Time”, and “Weaving

Mem”).

The third group of measurements in Tab. I (cols. 8–

15) measures the performance of programs rewritten by

capweave, and contains the number of reference tests

that the unwoven (i.e., baseline) program passed (“Tests”),

the number of tests passed by the woven version of each

benchmark (“OK”), the number of program points at which

capweave added instrumentation (“Woven Points”), the

number of functions that the benchmark executes in a

synchronous fork (“Interproc. Funcs.”), the runtime of

the baseline program (“Base”), the runtime of the woven

program expressed as a multiple of the runtime of the

baseline (“Woven Overhead”), the runtime of the hand-

woven program as a multiple of the runtime of the baseline

(“Hand Overhead”), and the percentage overhead of the

runtime of the woven program over the runtime of the hand-

woven program (“capweave/ Hand”). The geometric mean

of all “capweave/ Hand” values is 1.298 (i.e., capweave
overhead is 29.8%). Each benchmark was run on a host

machine with eight 2.2 GHz processors and 6 GB of

29

Program Features Policy Size Weaver Woven-Program Performance
Prog. Name Size Lines States Alpha. Weaving Weaving Tests OK Woven Interproc. Base (s) Woven Hand capweave/

(KLOC) Size Time Memory Points Funcs. Overhd. Overhd. Hand (%)

bzip2-1.0.6 8 70 5 5,156 4m57s 0.3 GB 6 6 66 1 0.593 1.099 0.909 20.90
gzip-1.2.4 9 68 5 1,787 3m26s 0.2 GB 2 2 55 1 0.036 1.278 1.111 15.03
php-cgi-5.3.2 852 114 11 15,777 46m36s 25.3 GB 11 2 213 2 0.289 1.938 1.170 65.64
tar-1.25 108 49 8 143 0m08s 0.2 GB 1 1 62 2 0.156 21.917 13.301 64.78
tcpdump-4.1.1 87 52 6 223 0m09s 0.3 GB 29 27 88 1 1.328 1.224 0.981 24.77
wget-1.12 64 35 3 549 0m10s 0.2 GB 4 4 246 1 4.539 1.106 1.096 0.91

Table I
EXPERIMENTAL DATA FOR A SET OF BENCHMARKS PROGRAMS AND POLICIES. THE FIELDS OF THE TABLE ARE DISCUSSED IN §IV-C. IN THIS TABLE,
THE PERFORMANCE NUMBERS REPORTED ARE THOSE FROM THE TEST WORKLOADS INCLUDED IN THE SOURCE DISTRIBUTION OF EACH PROGRAM.

PERFORMANCE ON A LARGER, MORE REALISTIC WORKLOAD IS DISCUSSED IN §IV-C.

memory, in a Capsicum virtual machine with one processor

and 2 GB of memory.

Each woven program behaved identically to its corre-

sponding hand-woven program on each test, and behaved

identically to its corresponding unwoven program on each

test, except for some tests included with tcpdump and

php-cgi. The woven tcpdump failed tests included with

tcpdump that gave a filepath to a file containing a secret

key for decrypting IPsec ESP packets, instead of giving the

secret key directly on the command line. The tcpdump
policy specified that the woven tcpdump should not be

able to open any file except for the input network device,

and hence could not open the file containing the secret key.

The woven php-cgi failed tests included with php-cgi
because no weaving of php-cgi can simultaneously satisfy

the policy specified by the MITLL group and pass all of the

tests. For example, the MITLL policy does not allow a PHP

program to create a new file in its current directory. The

woven php-cgi thus failed any test in which a program

tried to create a file for output in its current directory.

tcpdump and php-cgi thus illustrate one key aspect of

capweave: capweave allows a programmer to specify

the capabilities that a program should hold throughout an

execution, and automatically obtain a program that holds

the specified capabilities. However, a programmer still must

determine manually whether the capabilities specified by

a particular policy strike an acceptable balance between

the security requirements of the program and its original

functionality.

The number of program points at which capweave
introduced instrumentation (i.e., “Woven Points”) was small

relative to the size of each benchmark. Furthermore, the

number of functions that each woven benchmark executed

between a synchronous fork and join (i.e., “Interproc.

Funcs”) was small, and matched the number of functions

that each hand-woven benchmark executed between a syn-

chronous fork and join (and thus likely was minimal).

However, woven versions of bzip2, gzip, php-cgi, and

wget incurred noticeable overhead. We suspected that the

woven versions of these programs would introduce the most

overhead on small workloads, because on such workloads,

the fixed overhead of executing a synchronous fork and

join dominates the overall runtime of the program.

To measure the performance of the woven programs

on larger workloads, we generated a 1 GB file of source

code from the Capsicum kernel source tree, and used it as

a workload for bzip2, gzip, and wget. The unwoven

bzip2 compressed the large file in 25m31s, and the woven

bzip2 compressed the large data with 4% overhead over

the baseline time. The unwoven gzip compressed the large

file in 5m27s, and the woven gzip compressed the large

data with 3% overhead over the baseline time. The unwoven

wget downloaded the large file from a server on the same

local network in 1m06s, and the woven wget downloaded

the large data with −4% overhead over the baseline time,

indicating that the overhead of the weaving is obscured by

noise introduced by network traffic. Thus, the maximum

overhead of the woven programs over unwoven programs

is 4%, and geometric mean of all the overheads is 1%. The

overhead for php-cgi depends entirely on how frequently

an input PHP script opens files over the course of its

execution.

The woven versions of tar and tcpdump introduced

noticeable overhead on operations that execute frequently

on all workloads, such as a procedure in tar that reads

data into a buffer, or a procedure in tcpdump that resolves

network addresses to names. The per-operation overhead

induces an enormous overhead in tar in particular, and

illustrates another limitation of capweave: some policies

induce capweave to introduce costly primitives, such as

fork, at program points that induce considerable overhead,

whereas capweave might be able to instrument other pro-

gram points that induce much less overhead. The overhead

of the hand-woven program, while less than the overhead

of the capweave-woven program, is still considerable:

in our experience, weaving tar efficiently is a difficult

problem, and one that could benefit significantly from further

automatic-tool support. In future work, we hope to address

this limitation by extending capweave to use a cost metric,

and generalizing the game solver to find optimal strategies

30

for quantitative games [22].

V. RELATED WORK

Capability systems: Karger [23] introduced a capa-

bility system that mitigates the effects of an attack by

a malicious program run on the system. The Capsicum

operating system [10] provides security primitives to support

isolating components of a program in sandboxes that run

with different capabilities based on UNIX file descriptors.

This paper describes the capweave tool, which greatly

eases the burden of using Capsicum by allowing policies to

be stated as a separate specification that capweave weaves

into the program automatically.

Security monitors: Operating systems that provide

security system calls, such as Capsicum, HiStar [11],

Wedge [24] etc., allow an application developer to define

program-specific policies (where the nature of the policy

depends on the security primitives offered by the operating

system). In contrast, Mandatory Access Control (MAC) op-

erating systems, such as [25]–[27] only support system-wide

policies described in terms of standard system events. Such

policies cannot refer to important events in the execution

of a particular program, but many practical policies can

only be defined in terms of such events [28]. UNIX can

monitor programs to ensure that they satisfy policies if the

program correctly uses the setuid system call, but in

general this approach suffers the same shortcomings as MAC

systems. In comparison, systems with security primitives

allow an application to signal key events in its execution to

the operating system. Watson has described the challenges

of developing an access-control system, and has surveyed

recent implementations of such systems [29].

An Inline Reference Monitor (IRM) rewriter takes a policy

expressed as an automaton and instruments a target program

with an IRM, which executes in the same memory space as

the program, and halts the program if it attempts to perform

some sequence of actions that would violate the policy [28],

[30]. Edit automata [31] generalize IRMs by also supressing

or adding security-sensitive events to ensure that the program

satisfies a policy. Because an IRM (or edit automaton)

executes in the same memory space as the program that it

monitors, it can enforce policies defined over arbitrary events

in the execution of the program. However, for the same

reason, an IRM can only monitor the execution of managed

code. In comparison, systems with security primitives can

safely and efficiently monitor programs composed largely

of unmanaged code [10], [11].

Writing programs for security monitors: Prior work

on programming aids for systems with security primitives

automatically verifies that a program instrumented to use the

Flume OS [9] primitives enforces a high-level policy [32],

automatically instruments programs to use the primitives of

the HiStar OS to satisfy a policy [33], and automatically

instruments programs [32] to use the primitives of the Flume

OS [9]. However, the languages of policies used in the

approaches presented in [33], [34] are not temporal, and

cannot clearly be applied to other systems with security

primitives. The weaving algorithm presented in this paper

applies a known automata-theoretic weaving algorithm [15],

and can, in principle, be applied in multiple settings. The

main contribution of this paper is to describe how the

automata-theoretic algorithm can be applied as an engine

to rewrite programs for a practical capability system.

In the privsep project [35], OpenSSH was rewritten

manually to execute using a trusted, privileged parent pro-

cess and an unprivileged child process. A programmer can

use the Privman [36] library to manually compartmentalize

a UNIX daemon into high and low-privilege processes.

Previous work [37], [38] automatically partitions programs

so that high and low-confidentiality data are processed

by separate processes, or on separate hosts. The SOAPP

project [39] proposes a semi-automatic technique in which

a programmer annotates a program with a hypothetical sand-

box, and a program analysis validates that the sandbox does

not introduce unexpected program behavior. The SOAPP

approach is similar in spirit to [32], which uses model

checking to verify that a programmer-proposed partitioning

and set of calls to security primitives satisfies a given

policy. In contrast, capweave automatically infers where to

invoke library functions that cause the program to execute in

different processes (if necessary), and rewrites the program

accordingly.

Skalka and Smith [40] present an algorithm that takes

a Java program instrumented with capability-based security

checks, and attempts to show statically that some checks

are always satisfied. Hamlen et al. [41] verify that programs

rewritten by an IRM rewriter are correct. Thus, the work

in both of those papers concerns identifying superfluous

capability checks in managed programs, whereas our work

concerns how to infer the correct placement of primitives to

restrict the capabilities of unmanaged programs.

Safety games: Safety games have been studied as a

framework for synthesizing reactive programs and control

mechanisms [14], [42]. Previous work describes algorithms

that take a safety game, determine which player can always

win the game, and synthesize a winning strategy for the

winning player [14]. The key contribution of our work is

to demonstrate that such game-theoretic problems can be

applied in practice to rewrite programs to enforce a security

policy.

VI. CONCLUSION

New operating systems, such as the Capsicum capability

system, define powerful system-level primitives for secure

programming, but such primitives are non-trivial to use. This

paper presents a policy-weaver for Capsicum, capweave,

that takes from a programmer an uninstrumented program

and a high-level policy that describes correct behavior of the

31

program. capweave automatically infers where to invoke

security primitives and rewrites the program accordingly.

In practice, capweave produces programs that match the

behavior and performance of programs manually modified

by an expert. capweave is designed so that a Capsicum Ar-

chitect can easily add, remove, or update new programming

libraries as they continue to be developed.

Acknowledgments: We gratefully acknowledge the

work of the Capsicum development team, in particular Pawel

Dawidek, Khilan Gudka, and Ben Laurie, in developing Cap-

sicum and manually instrumenting programs for Capsicum.

We thank Michael Zhivich and Jeffrey Seibert at MITLL

for developing the capweave policy for PHP. We thank

our shepherd, Niels Provos.

Supported, in part, by DARPA and AFRL under contracts

FA8650-10-C-7088 and FA8750-10-C-0237. The views,

opinions, and/or findings contained herein are those of the

authors and should not be interpreted as representing the

official views or policies, either expressed or implied, of

the Defense Advanced Research Projects Agency or the

Department of Defense.

REFERENCES

[1] “CVE-2007-3798,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-3798, July 2007.

[2] “CVE-2004-1488,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CAN-2004-1488, Feb 2005.

[3] “CVE-2010-0405,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2010-0405, April 2010.

[4] “Vulnerability note VU#381508,” http://www.kb.cert.org/
vuls/id/381508, July 2011.

[5] “Vulnerability note VU#520827,” http://www.kb.cert.org/
vuls/id/520827, May 2012.

[6] “CVE-2007-4476,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2007-4476, Aug 2007.

[7] “GNU Tar and GNU Cpio rmt read () function buffer
overflow,” http://xforce.iss.net/xforce/xfdb/56803, Mar 2010.

[8] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and R. Mor-
ris, “Labels and event processes in the Asbestos operating
system,” in SOSP, 2005.

[9] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek,
E. Kohler, and R. Morris, “Information flow control for
standard OS abstractions,” in SOSP, 2007.

[10] R. N. M. Watson, J. Anderson, B. Laurie, and K. Kennaway,
“Capsicum: Practical capabilities for UNIX,” in USENIX
Security, 2010.

[11] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières,
“Making information flow explicit in HiStar,” in OSDI, 2006.

[12] “FreeBSD 9.0-RELEASE announcement,” http:
//www.freebsd.org/releases/9.0R/announce.html, Jan. 2012.

[13] “cl-capsicum-discuss – Capsicum project discussion list,”
https://lists.cam.ac.uk/mailman/listinfo/cl-capsicum-discuss,
2012.

[14] R. Alur, S. L. Torre, and P. Madhusudan, “Modular strategies
for recursive game graphs,” in TACAS, 2003.

[15] W. R. Harris, S. Jha, and T. W. Reps, “Secure programming
via visibly pushdown safety games,” in CAV, 2012.

[16] C. Lattner, http://llvm.org/, Nov. 2011.

[17] R. Alur and P. Madhusudan, “Visibly pushdown languages,”
in STOC, 2004.

[18] S. Graf and H. Saı̈di, “Construction of abstract state graphs
with PVS,” in CAV, 1997.

[19] W. R. Harris, S. Jha, T. Reps, J. Anderson, and R. N. M. Wat-
son, “Declarative, temporal, and practical programming with
capabilities,” http://minds.wisconsin.edu/handle/1793/64927,
University of Wisconsin-Madison, Tech. Rep. TR1785, 2013.

[20] A. One, “Smashing the stack for fun and profit,” Phrack
Magazine, vol. 49, no. 14, 1998.

[21] “Using Capsicum for sandboxing,” http://www.links.org/?p=
1242, April 2012.

[22] A. Ehrenfeucht and J. Mycielski, “Positional strategies for
mean payoff games,” International Journal of Game Theory,
vol. 8, no. 2, 1979.

[23] P. A. Karger, “Limiting the damage potential of discretionary
trojan horses,” in IEEE S&P, 1987.

[24] A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge:
Splitting applications into reduced-privilege compartments,”
in NSDI, 2008.

[25] P. Loscocco and S. Smalley, “Integrating flexible support for
security policies into the Linux operating system,” in USENIX
Annual Technical Conference, 2001.

[26] O. S. Saydjari, “Lock : An historical perspective,” in ACSAC,
2002.

[27] C. Wright, C. Cowan, J. Morris, and S. S. G. Kroah-Hartman,
“Linux security modules: General security support for the
Linux kernel,” in Found. of Intrusion Tolerant Systems, 2003.

[28] Ú. Erlingsson and F. B. Schneider, “IRM enforcement of Java
stack inspection,” in IEEE S&P, 2000.

[29] R. N. M. Watson, “A decade of OS access-control extensibil-
ity,” Commun. ACM, vol. 56, no. 2, Feb. 2013.

[30] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in CCS, 2005.

[31] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: Enforce-
ment mechanisms for run-time security policies,” Int. J. Inf.
Sec., vol. 4, no. 1-2, 2005.

[32] W. R. Harris, N. A. Kidd, S. Chaki, S. Jha, and T. Reps, “Ver-
ifying information flow control over unbounded processes,”
in FM, 2009.

[33] P. Efstathopoulos and E. Kohler, “Manageable fine-grained
information flow,” in EuroSys, 2008.

[34] W. R. Harris, S. Jha, and T. Reps, “DIFC programs by
automatic instrumentation,” in CCS, 2010.

[35] N. Provos, “Privilege separated OpenSSH,” http://www.citi.
umich.edu/u/provos/ssh/privsep.html, Aug 2003.

[36] D. Kilpatrick, “Privman: A library for partitioning applica-
tions,” in USENIX Annual Technical Conference, 2003.

[37] D. Brumley and D. X. Song, “Privtrans: Automatically
partitioning programs for privilege separation,” in USENIX
Security Symposium, 2004.

[38] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web application via automatic parti-
tioning,” in SOSP, 2007.

[39] K. Gudka, R. N. M. Watson, S. Hand, B. Laurie, and A. Mad-
havapeddy, “Exploring compartmentalization hypothesis with
SOAPP,” in AHANS 2012, 2012.

[40] C. Skalka and S. F. Smith, “Static enforcement of security
with types,” in ICFP, 2000.

[41] K. W. Hamlen, G. Morrisett, and F. B. Schneider, “Certified
in-lined reference monitoring on .NET,” in PLAS, 2006.

[42] R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-
time temporal logic,” in FOCS, 1997.

32

