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Abstract—Many widely-used data sharing applications rely on
allowing untrusted clients to query against secret data. Inference
control for secure data is a key issue. In these scenarios, the
owner of secret data opens the secret data for querying to
provide general information while trying to ensure not too much
information is leaked from these queries. In this work, we
propose a method based on Support Vector Machines (SVM) to
quickly determine whether a set of queries is leaking too much
information. Through experiments over several sample functions,
we demonstrate the performance and flexibility of this method.

Index Terms—Inference Control, Support Vector Machines

I. INTRODUCTION

Access control protocols are commonly used to protect
secure data. However, a malicious user may send a series of
seemingly innocent queries and infer much information of the
secure data from previous replies. The need for this kind of in-
ference control is explored in many database-related researches
[6], [3], [5]. In this work, we discuss this problem for the case
when the secret data is one entry. For example, a pharmacist
needs to perform a drug interaction check over a patient. What
she needs to know is only certain part of the patient’s history
such as if the patient is allergic to certain drug combinations.
Unlike the patient’s doctor, the pharmacist should not know the
detail sensitive health information. Similar situation happens
to personal recommendation systems such as on-line shopping
websites and music players. Privacy is always a concern for
these systems and there are also papers [1] about sensitive
information leakage by these recommendation systems.

We model the process of gathering necessary personal
information for certain purposes as a set of querying processes.
The query client can perform the inference attack by analyzing
a set of query replies. The objective of the data owner is
to ensure that not too much information is leaked while still
provide necessary information.

Secure computation is considered as a powerful tool to
handle applications with privacy concerns. Secure computation
guarantees that each party only knows the result and its
own inputs after the computation. However, in the previous
scenarios, after several queries, the querier can still infer a
lot of information even if each query-reply process is done
by secure computation. So, a method that can be embedded
into a secure computation protocol is needed here if both each
party’s inputs should be protected over several computations.
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II. APPROACHES AND EXPERIMENT RESULTS

In our model, the information leakage is defined by the
number of remaining possible private values that are consistent
with all previous query results. This is a very straightfor-
ward measurement: if after applying exclusive rules which
investigate query results, there are still many possibilities
for the secret, we can say the private data remains mostly
undetermined after these queries.

Apparently it is too complicated to compute information
leakage by exhaustively testing all remaining possibilities of
the secret. There is a previous work [4] trying to simplify
this computation by approximation. Although they achieves
polynomial complexity for string secrets, still, it suffers for
two reasons. First, polynomial complexity is still too complex
to be implemented in secure computation protocols. Moreover,
the method only works for a certain class of functions. Most
approaches in the database area mentioned before are either
too complicated for secure computation or too restricted to
database applications. Raymond et al. [6] use inference rules to
detect information leakage. However, some of their operations
require exponential time. Yu et al. [3] use a Bayesian network
to evaluate the inference probability in a database. Sastry et
al. [5] propose an aggregation graph to represent inference.
Both of these two papers are based on exploring the structure
of a database and data dependencies.

In this work, we notice that the owner does not care much
about how much information is leaked. Generally, the owner
has an idea of a self-defined threshold about the upper limit
of the information leakage. What we need is just a classifier.
There are two classes for incoming queries: “leaking too
much information.” or “it’s okay.” The classifier will determine
which class the incoming queries belong to. Using a classifier
has two advantages. First, the most complicated training
process can be separated from the classifying process which
is much simpler. Since the classifier can be trained before
actual queries come, we can train the classifier extensively
with well-prepared samples and these training samples can
be pre-computed. The classifying algorithm is normally quite
simple. In this work, the SVM classification can be done
by a vector multiplication and one comparison. Second, the
classifier can be applied to many secret data formats and query
functions efficiently. The validity of the classifier lies in that
very similar queries over identical secret leaks very similar



amount of information, which is true or almost true for most
cases.

We use the Support Vector Machines (SVM), a quite popular
supervised machine learning algorithm in this work. We test
the performance of SVM-based classification with preliminary
experiments when the secret is a string and the query function
is Hamming or Levenshtein distances. We use LibSVM [2] as
our SVM tool. The performance of the SVM is determined by
its kernel function, which maps the original data to a higher
dimension. One kernel function we use is the classic RBF
kernel, defined as:

K(X,y) = Cgf('Y(HX*YHZ))

where x,y are two data points and C, 7 are parameters.
The key question is how to define the distance between two
data points. By customizing the distance function based on
actual applications, we can construct an SVM that is best fit
to the problem. For example, in our work when the secret is a
string and the query function is Hamming distance represented
as H(x,y), a data point is a certain set of queries. In the
case where the number of queries is 1, we define the distance
function between two sets of queries x and y as:

Ix—yl|[ =min(H(x,y),N — H(xy))

where N is the length of the query sequence. We observe
that querying with a certain binary sequence X leaks the same
amount of information as the querying with the opposite of
X. So, two query sequences are considered similar if they are
almost identical or almost opposite in the distance function
above. When there are multiple queries, we define the distance
function as a match of queries that has the minimal sum.
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Fig. 1. ROC curve for 24 bit binary secret sequence/2 queries over Hamming
distance

A few results of our experiments are shown in Figure 1
and Figure 2. The classification performance is depicted with
ROC curves. In an ROC curve, the x-axis and y-axis represent
the False Positive Rate (FPR) and True Positive Rate (TPR),
respectively. In Figure 1, we use 100 positive and 100 negative
samples from 1000 random query sets as training samples. In
Figure 2, we use 100 positive and 100 negative samples from
500 random query sets as training samples. The test sample
size is 100.

Additionally, we introduce a new parameter r. In our current
experiments, the SVM is trained by extreme samples, i.e.
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Fig. 2. ROC curve for 10 bit genome sequence/2 queries over Levenshtein
distance

queries that will leak almost all or no information. So what
we want to confirm is that it is able to detect very dangerous
queries and very safe queries. For queries leaks a moderate
amount of information, the classification performance is not
as good (shown with ROC curves when r = 0). The parameter
r represents the threshold to determine whether the incoming
query set is too close to the average information leakage. If the
information leakage for an incoming query set locates within
the interval defined by the percentage r around the median,
the decision made by the SVM will not be considered.

From these images, we can observe that generally the SVM
with 200-400 samples can detect more than 90% dangerous
queries with less than 30% false positive rate (<20 % in most
cases). Note that performances still have huge improving space
since the secret owner can easily prepare more samples to
ensure their data safety in a practical application.

III. CONCLUSION

Inference control is necessary for multiple query process
over single secret data. We introduce an SVM-based learning
and classifying approach that can quickly determine whether
the query is about to leak too much information. Experiments
show that it can achieve high classification performance over
different query functions.
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