
An Intermediate Language for Garbled Circuits
William Melicher

University of Virginia
Email: wrm2ja@virginia.edu

Samee Zahur
University of Virginia

Email: samee@virginia.edu

David Evans
University of Virginia

Email: evans@cs.virginia.edu

Abstract—Secure two-party computation allows two parties to
evaluate a function of their private inputs without revealing their
own inputs to the other party. The garbled circuit technique,
developed by Andrew Yao, is a generic approach to secure
computation, but has traditionally been viewed as impractical
due to lack of efficient frameworks for generating and executing
garbled circuits. Our group has been working on ways to
make garbled circuit execution more efficient and scalable. Prior
to this work, that has required low level circuit descriptions
and extensive manual optimization effort. This work introduces
GCParser, a modular intermediate level language for easily
optimizing and executing garbled circuits. We demonstrate that
this language can efficiently take advantage of optimizations for
garbled circuits.

I. INTRODUCTION

Secure two-party computation allows two parties to evaluate
a function of their private inputs without revealing their own
inputs to the other party. In 1982, Andrew Yao [1] devel-
oped a technique called garbled circuits to implement secure
computation for generic functions. Later this technique was
proven to be secure by Lindell and Pinkas in 2009 [2]. Secure
computation has been an area of theoretical research, but has
seen limited applications, due in part to lack of an efficient
and flexible framework. Previous approaches to garbled circuit
development, most significantly Fairplay [3], were viewed as
being too inefficient. Indeed, secure computation via garbled
circuits was, and still is, orders of magnitude more difficult
than using a trusted third party. However, using a trusted third
party is not always appropriate, especially in privacy sensitive
applications.

Since their creation, garbled circuit techniques have been
incrementally improving, allowing more practical applica-
tions. Recent work has mitigated many of these problems,
and resulted in significant gains in efficiency and scalability
[4], [5], [6], [7]. These gains make practical applications
of secure computation more tractable on diverse platforms.
Natural applications of secure computation have historically
been focused on preserving privacy, and include biometric
identification [8], and private auction systems[9].

It is difficult to generate efficient secure computations
directly from programs in high-level languages. Our goal
is to provide a standard intermediate language that can be
used with a variety of front ends and back ends. Because
GCParser is neither too high level, nor too low level, a range
of optimizations can be applied. High level languages can
have difficulty taking advantage of low level optimizations like
preferring XOR gates, which can be used with no overhead

[10]. However, low level languages do not have enough
high level semantics to perform optimizations like reordering
expressions to favor completely local computation.

Fairplay [3] was an early system to create a high level
language for describing garbled circuits. Since its creation,
many incremental optimizations have been made that require
low level knowledge of the specific operations to be done.
Optimizations such as determining which operations can be
done locally without loss of privacy[11] can be difficult
without finer grained information about the circuit. This finer-
grained information is not available with a high level language.
Incorporating these low level optimizations into a high level
language like Fairplay is difficult without heavily modifying
the language. Part of the motivation for GCParser was to avoid
these difficulties with creating an efficient high level language
for garbled circuits.

II. THE GCPARSER APPROACH

This poster presents GCParser, an intermediate language for
describing and executing garbled circuits. It was designed to
allow optimized circuits to be shared across a variety of both
front ends and back ends. GCParser builds on our previous
low level framework for executing garbled circuits. Our pre-
vious work [4] implemented techniques for more efficient and
scalable garbled circuits, by pipelining circuit generation and
execution, which reduced the exorbitant memory constraints
required by large circuits. However, GCParser is independent
of the particular circuit execution framework, and allows
execution of other back ends for secure computation. It is
intended to be used as a generated language by other utilities,
allowing them to take advantage of any optimizations that act
on GCParser. GCParser operates at the level of variables and
expressions, but does not have higher level language constructs
such as looping. This makes GCParser easy to optimize, and
allows code to be easily generated for GCParser. Here are
some of the more notable features of GCParser language.
(a) Agnostic to Higher Level Front ends

GCParser is independent of high level frameworks, and
can therefore be used with different interfaces to the lan-
guage. Although there are no current high level front ends
for GCParser, this will be a focus of future work. Any front
end that supports the GCParser language interface will
implement any optimizations which act on the GCParser
language for free. This layering approach to a language
for garbled circuits allows a variety of optimizations to be
made, both at the high level and the low level.



(b) Simple Parsing and Semantics
The language specification itself is easily generated and
parsed. The simplicity of the grammar allows many dif-
ferent front ends to compile to the GCParser language.
A simple program written in the GCParser language to
compute the minimum of two sums of integers is shown
in Figure 1. You can see that the program has a simple
structure; first describing input to the circuit, next output,
and finally describing the operations of the circuit. Inputs
are marked with numbers denoting the supplying party,
and their bit length. Calculation lines have a single vari-
able, created at that step, followed by the operation name,
then the operands.

.input a1 1 16

.input a2 1 16

.input b1 2 16

.input b2 2 16

.output minimum
sum1 add a1 b1
sum2 add a2 b2
minimum min sum1 sum2

Fig. 1. A Small GCParser Program

(c) Optimizations can Act on Intermediate Code
GCParser is designed with the ability to easily perform
optimizations that control the evaluation of expressions.
This is due to the simplicity of the syntax and expres-
sions which allow analysis of the computation. Because
nearly all operations in the GCParser language are in a
static single assignment form, information flow can be
tracked through a program[12]. This allows optimizations
described by Kerschbaum[11] to infer which operations
do not hide data, and can therefore be done non-privately.
An example of this would be computing the minimum
of x and x+2. This expression will always be equal to
x, but this transformation is difficult to do in a low level
language where it is unclear which gates perform which
arithmetic operations. Similarly, it is difficult to perform
in a high level language where this form only exists in
certain instances of an unrolled loop.

(d) Flexibility of Operations and Back ends
The GCParser language is able to easily support new
primitive operations by extending it with a short java
custom circuit. Operations can act at different levels of
abstraction, either on bits, or on variables. Because you
can add primitive operations to the language, GCParser
can be used with different garbled circuit back ends while
still benefiting from GCParser optimizations.

III. PRELIMINARY RESULTS

We have developed prototype code to run a secure string
difference algorithm on top of the GCParser language. We

plan to extend GCParser with a high level front end interface.
This prototype test indicates that this will both increase
performance and allow easier development of efficient garbled
circuit applications.

IV. CONCLUSION

For garbled circuits to be practical, there must be continued
increases in performance. Significant performance gains have
been made, but secure computation using garbled circuits is
still orders of magnitude slower than using a trusted third
party to perform the computation. However, for many appli-
cations, secure computation using garbled circuits is feasible,
and improved language tools can help both to increase the
performance of secure computation, and allow for easier devel-
opment. GCParser explores a new way of designing languages
for garbled circuits by incorporating a layered architecture.
GCParser is an initial intermediate language, but future work
will be focused on creating a high level language front end
without sacrificing performance.

REFERENCES

[1] A. C.-C. Yao, “Protocols for secure computations (extended abstract),”
in FOCS. IEEE Computer Society, 1982, pp. 160–164.

[2] Y. Lindell and B. Pinkas, “A proof of security of yao’s protocol for
two-party computation,” J. Cryptol., vol. 22, no. 2, pp. 161–188, Apr.
2009. [Online]. Available: http://dx.doi.org/10.1007/s00145-008-9036-8

[3] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay - secure two-
party computation system,” in USENIX Security Symposium. USENIX,
2004, pp. 287–302.

[4] Y. Huang, D. Evans, J. Katz, and L. Malka, “Faster secure two-party
computation using garbled circuits,” in USENIX Security Symposium.
USENIX Association, 2011.

[5] R. Wang, X. Wang, Z. Li, H. Tang, M. K. Reiter, and
Z. Dong, “Privacy-preserving genomic computation through program
specialization,” in Proceedings of the 16th ACM conference on
Computer and communications security, ser. CCS ’09. New
York, NY, USA: ACM, 2009, pp. 338–347. [Online]. Available:
http://doi.acm.org/10.1145/1653662.1653703

[6] J. K. Yan Huang, David Evans, “Private set intersection: Are garbled
circuits better than custom protocols?” in NDSS, 2012.

[7] D. E. Yan Huang, Jonathan Katz, “Quid-pro-quo-tocols: Strengthening
semi-honest protocols with dual execution,” in Oakland. The Internet
Society, 2012.

[8] Y. Huang, L. Malka, D. Evans, and J. Katz, “Efficient privacy-preserving
biometric identification,” in NDSS. The Internet Society, 2011.

[9] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider, “Improved garbled
circuit building blocks and applications to auctions and computing
minima,” in CANS, ser. Lecture Notes in Computer Science, J. A. Garay,
A. Miyaji, and A. Otsuka, Eds., vol. 5888. Springer, 2009, pp. 1–20.

[10] V. Kolesnikov and T. Schneider, “Improved garbled circuit: Free xor
gates and applications,” in Automata, Languages and Programming, ser.
Lecture Notes in Computer Science, L. Aceto, I. Damgrd, L. Goldberg,
M. Halldrsson, A. Inglfsdttir, and I. Walukiewicz, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5126, pp. 486–498, 10.1007/978-3-540-70583-3-
40. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-70583-3-40

[11] F. Kerschbaum, “Automatically optimizing secure computation,”
in Proceedings of the 18th ACM conference on Computer
and communications security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 703–714. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046786

[12] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and
the control dependence graph,” ACM Trans. Program. Lang. Syst.,
vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:
http://doi.acm.org/10.1145/115372.115320


