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Abstract—Text-based passwords remain the dominant au-
thentication method in computer systems, despite significant
advancement in attackers’ capabilities to perform password
cracking. In response to this threat, password composition
policies have grown increasingly complex. However, there is
insufficient research defining metrics to characterize password
strength and using them to evaluate password-composition
policies. In this paper, we analyze 12,000 passwords collected
under seven composition policies via an online study. We
develop an efficient distributed method for calculating how
effectively several heuristic password-guessing algorithms guess
passwords. Leveraging this method, we investigate (a) the
resistance of passwords created under different conditions to
guessing; (b) the performance of guessing algorithms under
different training sets; (c) the relationship between passwords
explicitly created under a given composition policy and other
passwords that happen to meet the same requirements; and
(d) the relationship between guessability, as measured with
password-cracking algorithms, and entropy estimates. Our
findings advance understanding of both password-composition
policies and metrics for quantifying password security.
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I. INTRODUCTION

Text-based passwords are the most commonly used au-

thentication method in computer systems. As shown by

previous research (e.g., [1]–[3]), passwords are often easy

for attackers to compromise. A common threat model is an

attacker who steals a list of hashed passwords, enabling him

to attempt to crack them offline at his leisure. The many

recent examples of data breaches involving large numbers of

hashed passwords (Booz Allen Hamilton, HBGary, Gawker,

Sony Playstation, etc.), coupled with the availability of

botnets that offer large computational resources to attackers,

make such threats very real [4]–[7]. Once these passwords

have been cracked, they can be used to gain access not

only to the original site, but also to other accounts where

users reuse their passwords. Password reuse (exactly and

with minor variations) is a common and growing practice as

users acquire more online accounts [8], [9].

To mitigate the danger of such attacks, system adminis-

trators specify password-composition policies. These poli-

cies force newly created passwords to adhere to various

requirements intended to make them harder to guess. Typical

requirements are that passwords include a number or a

symbol, that they exceed a certain minimum length, and

that they are not words found in a dictionary.

Although it is generally believed that password-

composition policies make passwords harder to guess, and

hence more secure, research has struggled to quantify

the level of resistance to guessing provided by different

password-composition policies or the individual require-

ments they comprise. The two most commonly used methods

for quantifying the effect of password-composition poli-

cies are estimating the entropy of the resulting passwords

(e.g., [10], [11]), and empirically analyzing the resulting

passwords with password-guessing tools (e.g., [12], [13]).

The former, however, is not based on empirical data, and the

latter is difficult to apply because of the dearth of available

password sets created under different password-composition

policies.

In this paper, we take a substantial step forward in un-

derstanding the effects of password-composition policies on

the guessability of passwords. First, we compile a dataset of

12,000 plaintext passwords collected from different partic-

ipants under seven different password-composition policies

using an online study. Second, we develop approaches for

calculating how long it would take for various password-

guessing tools to guess each of the passwords we collected.

This allows us to evaluate the impact on security of each

password-composition policy.

Contributions. We make the following contributions:

1) We implement a distributed technique (guess-number
calculator) to determine if and when a given

password-guessing algorithm, trained with a given

data set, would guess a specific password. This allows

us to evaluate the effectiveness of password-guessing

attacks much more quickly than we could using exist-

ing cracking techniques.

2) We compare, more accurately than was previously

possible, the guessability of passwords created under

different password-composition policies. Because of

the efficiency of our approach (compared to guessing

passwords directly), we can investigate the effective-
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ness of multiple password-guessing approaches with

multiple tunings. Our findings show that a password-

composition policy requiring long passwords with no

other restrictions provides (relative to other tested

policies) excellent resistance to guessing.

3) We study the impact of tuning on the effectiveness of

password-guessing algorithms. We also investigate the

significance of test-set selection when evaluating the

strength of different password-composition policies.

4) We investigate the effectiveness of entropy as a mea-

sure of password guessability. For each composition

policy, we compare our guessability calculations to

two independent entropy estimates: one based on the

NIST guidelines mentioned above, and a second that

we calculate empirically from the plaintext passwords

in our dataset. We find that both measures of en-

tropy have only very limited relationships to password

strength as measured by guessability.

Mechanical Turk and controlled password collection. As

with any user study, it is important to reflect on the origin

of our dataset to understand the generalizability of our

findings. We collected 12,000 plaintext passwords using

Amazon’s Mechanical Turk crowdsourcing service (MTurk).

Many researchers have examined the use of MTurk workers

(Turkers) as participants in human-subjects research. About

half of all Turkers are American, with Indian participation

increasing rapidly in the last 2-3 years to become about

one third of Turkers [14]. American Turkers are about two-

thirds women, while Indian Turkers are similarly weighted

toward men [15]. Overall, the Turker population is younger

and more educated than the general population, with 40%

holding at least a bachelor’s degree; both of these trends are

more pronounced among Indian Turkers [14], [15].

Buhrmester et al. find that the Turker population is signif-

icantly more diverse than samples used in typical lab-based

studies that heavily favor college-student participants [16].

This study, and others, found that well-designed MTurk tasks

provide high-quality user-study data [16]–[19].

This analysis of MTurk has important implications in

the context of studying passwords. We expect our findings

will be more generalizable than those from lab studies with

a more constrained participant base. Because we collected

demographic information from our participants, our sample

(and any biases it introduces) can be more accurately char-

acterized than samples based on leaked password lists from

various websites collected under uncertain circumstances.

A related consideration is that while our participants

created real passwords that were needed several days later to

complete the study and obtain a small bonus payment, these

passwords did not protect high-value accounts. Password

research has consistently been limited by the difficulty of

studying passwords used for high-value accounts. Lab stud-

ies have asked participants to create passwords that protect

simulated accounts, $5, a chance to win an iPod in a raffle,

or access to university course materials including homework

and grades [20]–[23]. Other studies have relied on leaked

password lists like the RockYou set [13], [24]. While this

set contains millions of passwords, it also contains non-

password artifacts that are difficult to filter out definitively,

its provenance and completeness are unclear, and it is

hard to say how much value users place on protecting an

account from a social gaming service. Other commonly used

leaked password lists come from sites including MySpace,

silentwhisper.net, and a variety of Finnish websites, with

user valuations that are similarly difficult to assess [2],

[25]. In Section VI, we briefly compare our MTurk users’

behavior to results from a survey of people using higher-

value passwords in practice.

Overall, although our dataset is not ideal, we contend that

our findings do provide significant insight into the effects

of password-composition policies on password guessability.

Because so little is known about this important topic, even

imperfect information constitutes progress.

Roadmap. In Section II we survey related work. We de-

scribe our data collection and analysis methodology in Sec-

tions III and IV. We convey our main results in Section V,

and address their generalizability and ethical considerations

in Section VI. We conclude in Section VII by discussing

the implications of our results for future research and for

defining practical password-composition policies.

II. BACKGROUND AND RELATED WORK

Research on passwords has been active for many years.

We first summarize the different types of data collection and

analysis that have been used. We then discuss evaluations of

the impact of password policies and metrics for quantifying

password strength.

Collection and analysis of password data. Many prior

password studies have used small sample sizes [26]–[29],

obtained through user surveys or lab studies. Kuo et al.

estimated the security of 290 passwords created in an online

survey [21]. We also use an online survey, but we consider

larger and more varied sets of passwords. In addition, we

recruit participants using Mechanical Turk, which produces

more diverse samples than typical lab studies [16].

Other studies analyze large samples of passwords os-

tensibly created by users for actual accounts of varying

importance [1]–[3], [13], [30], [31]. Unlike these studies,

we study the impact of different password policies on pass-

word strength and use passwords collected under controlled

password-policy conditions.

Impact of password policies. Several studies have consid-

ered the impact of password policies on password strength.

In lab studies, Proctor et al. [12] and Vu et al. [32] found

passwords created under stricter composition requirements

were more resistant to automated cracking, but also more
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difficult for participants to create and remember. We consider

similar data for a much larger set of users, allowing for more

comprehensive evaluation. Other findings suggest too-strict

policies, which make creating and remembering passwords

too difficult, induce coping strategies that can hurt both

security and productivity [33]–[37]. Further, Florêncio and

Herley found that the strictest policies are often used not by

organizations with high-value assets to protect, but rather by

those that do not have to compete on customer service [38].
An increasingly popular password-strengthening measure

that we also investigate is subjecting new passwords to a

blacklist check. Schechter et al. proposed a password policy

in which passwords chosen by too many users are blacklisted

for subsequent users [39]. This offers many theoretical

advantages over other password-composition schemes.

Measuring password strength. Effective evaluation of

password strength requires a proper metric. One possible

metric is information entropy, defined by Shannon as the

expected value (in bits) of the information contained in a

string [40]. Massey connects entropy with password strength

by demonstrating that entropy provides a lower bound on

the expected number of guesses to find a text [41]. A

2006 National Institute of Standards and Technology (NIST)

publication uses entropy to represent the strength of a

password, but does not calculate entropy empirically [11].

Florêncio and Herley estimated theoretical entropy for the

field data they analyzed [1].
An alternative metric of password strength is “guessabil-

ity,” which characterizes the time needed for an efficient

password-cracking algorithm to discover a password. In one

example, Weir et al. divide a large set of existing passwords

into different categories based on composition, then apply

automated cracking tools to examine how well NIST’s

entropy estimates predict measured guessing difficulty [13].

Castelluccia et al. use Markov models to measure password

strength based on the distribution of already-selected pass-

words [42]. Dell’Amico et al. evaluate password strength

by calculating guessing probabilities yielded by popular

password-cracking heuristics [2]. We use a related approach

but focus on comparing password policies.
Narayanan et al. discuss a password-cracking technique

based on a Markov model, in which password guesses are

made based on contextual frequency of characters [27].

Marechal [43] and Weir [44] both examine this model and

find it more effective for password cracking than the popular

password-cracking program John the Ripper [45]. Weir et al.

present a novel password-cracking technique that uses the

text structure from training data while applying mangling

rules to the text itself [25]. The authors found their technique

to be more effective than John the Ripper. In a separate

study, Zhang et al. found Weir’s algorithm most effective

among the techniques they used [31].
In this work, we apply the Weir algorithm and a varia-

tion of the Markov model to generate blacklists restricting

password creation in some of our study conditions, and to

implement a new measure of password strength, the guess
number, which we apply to user-created passwords collected

under controlled password-composition policies.

III. METHODOLOGY: DATA COLLECTION

In this section, we discuss our methodology for collecting

plaintext passwords, the word lists we used to assemble the

blacklists used in some conditions, and the eight conditions

under which we gathered data. We also summarize partici-

pant demographics.

A. Collection instrument
From August 2010 to January 2011, we advertised a two-

part study on Mechanical Turk, paying between 25 and 55

cents for the first part and between 50 and 70 cents for the

second part. The consent form indicated the study pertained

to visiting secure websites.
Each participant was given a scenario for making a new

password and asked to create a password that met a set

of password-composition requirements; the scenarios and

requirements are detailed in Section III-C. Participants who

entered a password that did not conform to requirements

were shown an error message indicating which requirements

were not met and asked to try again until they succeeded.

After creating a password, participants took a brief survey

about demographics and password creation. Participants

were then asked to recall the password just created; after five

failed attempts, the password was displayed. For the second

part of the study, participants were emailed two days later

and asked to return to the website and recall their passwords.

We measured the incidence of passwords being written down

or otherwise stored (via detecting browser storage and copy-

paste behavior, as well as asking participants; see Section VI

for details). The second part of the study primarily concerns

memorability and usability factors. We report detailed results

on these topics in a prior paper, which uses a large subset

of the dataset we analyze here [46]; we briefly revisit these

findings when we discuss our results in Section V.

B. Word lists for algorithm training
We use six publicly available word lists as training data in

our analysis and to assemble the blacklists used in some of

our experimental conditions. The RockYou password set [24]

includes more than 30 million passwords, and the MySpace
password set [47] contains about 45,000 passwords. (We

discuss ethical considerations related to these datasets in

Section VI.) The inflection list1 contains 250,000 words in

varied grammatical forms such as plurals and past tense.

The simple dictionary contains about 200,000 words and is a

standard English dictionary available on most Unix systems.

We also used two cracking dictionaries from the Openwall

Project2 containing standard and mangled versions of dic-

1http://wordlist.sourceforge.net
2http://www.openwall.com/wordlists/
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tionary words and common passwords: the free Openwall
list with about 4 million words and the paid Openwall list
with more than 40 million. While these data sources are not

ideal, they are publicly available; we expect attackers would

use these word lists or others like them for training data. In

Section V-B, we consider the effect of a variety of training

sets drawn from these word lists as well as our collected

password data.

C. Conditions

Our participants were divided into eight conditions com-

prising seven sets of password-composition requirements

and two password-creation scenarios. We used two scenarios

in order to measure the extent to which giving participants

different instructions affects password strength. The survey
scenario was designed to simulate a scenario in which

users create low-value passwords, while the email scenario
was designed to elicit higher-value passwords. All but one

condition used the email scenario.

In the survey scenario, participants were told, “To link

your survey responses, we will use a password that you

create below; therefore it is important that you remember

your password.”

In the email scenario, participants were told, “Imagine

that your main email service provider has been attacked,

and your account became compromised. You need to create

a new password for your email account, since your old

password may be known by the attackers. Because of the

attack, your email service provider is also changing its

password rules. Please follow the instructions below to

create a new password for your email account. We will ask

you to use this password in a few days to log in again, so it

is important that you remember your new password. Please

take the steps you would normally take to remember your

email password and protect this password as you normally

would protect the password for your email account. Please

behave as you would if this were your real password!”

The eight conditions are detailed below.

basic8survey: Participants were given the survey scenario

and the composition policy “Password must have at least 8

characters.” Only this condition uses the survey scenario.

basic8: Participants were given the email scenario and

the composition policy “Password must have at least 8

characters.” Only the scenario differs from basic8survey.

basic16: Participants were given the email scenario and

the composition policy “Password must have at least 16

characters.”

dictionary8: Participants were given the email scenario and

the composition policy “Password must have at least 8 char-

acters. It may not contain a dictionary word.” We removed

non-alphabetic characters and checked the remainder against

a dictionary, ignoring case. This method is used in practice,

including at our institution. We used the free Openwall list

as the dictionary.

comprehensive8: Participants were given the email sce-

nario and the composition policy “Password must have at

least 8 characters including an uppercase and lowercase

letter, a symbol, and a digit. It may not contain a dictionary

word.” We performed the same dictionary check as in dic-

tionary8. This condition reproduced NIST’s comprehensive

password-composition requirements [11].

blacklistEasy: Participants were given the email scenario

and the composition policy “Password must have at least

8 characters. It may not contain a dictionary word.” We

checked the password against the simple Unix dictionary,

ignoring case. Unlike the dictionary8 and comprehensive8

conditions, the password was not stripped of non-alphabetic

characters before the check.

blacklistMedium: Same as the blacklistEasy condition,

except we used the paid Openwall list.

blacklistHard: Same as the blacklistEasy condition, except

we used a five-billion-word dictionary created using the

algorithm outlined by Weir et al. [25]. For this condition, we

trained Weir et al.’s algorithm on the MySpace, RockYou,

and inflection lists. Both training and testing were conducted

case-insensitively, increasing the strength of the blacklist.

These conditions represent a range of NIST entropy

values: 18 bits for basic8 and basic8survey, 30 bits for com-

prehensive8 and basic16, and 24 bits for the four dictionary

and blacklist conditions [11], [46]. We test the increasingly

popular blacklist approach (see Section II) with a wide range

of blacklist sizes.

D. Participant demographics

Of participants who completed part one of our study, 55%

returned within 3 days and completed part two. We detected

no statistically significant differences in the guessability of

passwords between participants who completed just part one

and those who completed both. As a result, to maximize data

for our analyses and use the same number of participants

for each condition, our dataset includes passwords from

the first 1,000 participants in each condition to successfully

complete the first part of the study. To conduct a wider

variety of experiments, we used data from an additional

2,000 participants each in basic8 and comprehensive8.

Among these 12,000 participants, 53% percent reported

being male and 45% female, with a mean reported age of

29 years. This sample is more male and slightly younger

than Mechanical Turk participants in general [14], [16].

About one third of participants reported studying or working

in computer science or a related field. This did not vary

significantly across conditions, except between blacklistEasy

and blacklistHard (38% to 31%; pairwise Holm-corrected

Fisher’s exact test [PHFET], p < 0.03). Participants in the

basic16 condition were slightly but significantly older (mean
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30.3 years) than those in blacklistHard, basic8, and com-

prehensive8 (means 28.6, 28.9, and 29.1 years respectively;

PHFET, p < 0.03). We observed no significant difference in

gender between any pair of conditions (PHFET, p > 0.05).

IV. METHODOLOGY: DATA ANALYSIS

This section explains how we analyzed our collected

password data. First, and most importantly, Section IV-A

discusses our approach to measuring how resistant pass-

words are to cracking, i.e., guessing by an adversary. We

present a novel, efficient method that allows a broader

exploration of guessability than would otherwise be possible.

For comparison purposes, we also compute two independent

entropy approximations for each condition in our dataset,

using methods described in Section IV-B.

A. Guess-number calculators

Traditionally, password guess resistance is measured by

running one or more password-cracking tools against a

password set and recording when each password is cracked.

This works well when the exploration is limited to a

relatively small number of guesses (e.g., 1010, or roughly

the number of guesses a modern computer could try in

one day). However, as the computational power of potential

adversaries increases, it becomes important to consider how

many passwords can be cracked with many more guesses.

To this end, we introduce the guess-number calcula-
tor, a novel method for measuring guess resistance more

efficiently. We take advantage of the fact that, for most

deterministic password-guessing algorithms, it is possible to

create a calculator function that maps a password to the

number of guesses required to guess that password. We

call this output value the guess number of the password.

A new guess-number calculator must be implemented for

each cracking algorithm under consideration. For algorithms

(e.g., [13]) that use a training set of known passwords to

establish guessing priority, a new tuning of the calculator is

generated for each new training set to be tested.

Because we collect plaintext passwords, we can use a

guessing algorithm’s calculator function to look up the

associated guess number for each password, without actually

running the algorithm. This works for the common case

of deterministic guessing algorithms (e.g., [13], [27], [43],

[45]).

We use this approach to measure the guessability of a set

of passwords in several ways. We compute the percentage

of passwords that would be cracked by a given algorithm,

which is important because the most efficient cracking tools

use heuristics and do not explore all possible passwords.

We also compute the percentage that would be cracked

with a given number of guesses. We also use calculators to

compare the performance of different cracking algorithms,

and different training-set tunings within each algorithm. By

combining guess-number results across a variety of algo-

rithms and training sets, we can develop a general picture

of the overall strength of a set of passwords.

We implemented two guess-number calculators: one for a

brute-force algorithm loosely based on the Markov model,

and one for the heuristic algorithm proposed by Weir et al.,

which is currently the state-of-the-art approach to password

cracking [13], [31]. We selected these as the most promising

brute-force and heuristic options, respectively, after compar-

ing the passwords we collected to lists of 1, 5, and 10 billion

guesses produced by running a variety of cracking tools and

tunings. Henceforth, we refer to our implementations as the

brute-force Markov (BFM) and Weir algorithms.

1) Training sets: Both algorithms require a training set: a

corpus of known passwords used to generate a list of guesses

and determine in what order they should be tried.

We explore a varied space of training sets constructed

from different combinations of the publicly available word

lists described in Section III-B and subsets of the passwords

we collected. This allows us to assess whether comple-

menting publicly available data with passwords collected

from the system under attack improves the performance

of the cracking algorithms. We further consider training-set

variations specifically tuned to our two most complex policy

conditions, comprehensive8 and basic16.

In each experiment we calculate guess numbers only for

those passwords on which we did not train, using a cross-

validation approach. For a given experiment, we split our

passwords into n partitions, or folds. We generate a training

set from public data plus (n−1) folds of our data, and test it

on the remaining fold. We use each of the n folds as test data

exactly once, requiring n iterations of testing and training.

We combine results from the n folds, yielding guess-number

results for all of our passwords. Because training often

involves significant computational resources, as described

in Section IV-A3, we limit to two or three the number of

iterations in our validation. Based on the similarity of results

we observed between iterations, this seems sufficient. We

describe our training and test sets in detail in Appendix A.

We do not claim these training sets or algorithms repre-

sent the optimal technique for guessing the passwords we

collected; rather, we focus on comparing guess resistance

across password-composition policies. Investigating the per-

formance of guessing algorithms with different tunings also

provides insight into the kind of data set an attacker might

need in order to efficiently guess passwords created under a

specific password-composition policy.

2) BFM calculator: The BFM calculator determines

guess numbers for a brute-force cracking algorithm loosely

based on Markov chains [27], [43]. Our algorithm differs

from previous work by starting with the minimum length

of the password policy and increasing the length of guesses

until all passwords are guessed. Unlike other implementa-

tions, this covers the entire password space, but does not try
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guesses in strict probability order.

The BFM algorithm uses the training set to calculate the

frequency of first characters and of digrams within the pass-

word body, and uses these frequencies to deterministically

construct guessing order. For example, assume an alphabet

of {A, B, C} and a three-character-minimum configuration.

If training data shows that A is the most likely starting

character, B is the character most likely to follow A, and C
is the character most likely to follow B, then the first guess

will be ABC. If the next-most-likely character to follow B
is A, the second guess will be ABA, and so forth.

Our guess-number calculator for this algorithm processes

the training data to generate a lookup table that maps each

string to the number of guesses needed to reach it, as follows.

For an alphabet of N characters and passwords of length L,

if the first character tried does not match the first character

of the target password, we know that the algorithm will

try NL−1 incorrect guesses before switching to a different

first character. So, if the first character of the password

to be guessed is the k-th character to be tried, there will

be at least (k − 1)NL−1 incorrect guesses. We can then

iterate the computation: when the first character is correct,

but the second character is incorrect, the algorithm will

try NL−2 incorrect guesses, and so forth. After looking

up the order in which characters are tried, we sum up the

number of incorrect guesses to discover how many iterations

will be needed before hitting a successful guess for a given

password, without having to actually try the guesses.

3) Weir algorithm calculator: We also calculate guess

numbers for Weir et al.’s more complex algorithm. The

Weir algorithm determines guessing order based on the

probabilities of different password structures, or patterns

of character types such as letters, digits, and symbols [25].

Finer-grained guessing order is determined by the probabil-

ities of substrings that fit into the structure. The algorithm

defines a terminal as one instantiation of a structure with

specific substrings, and a probability group as a set of

terminals with the same probability of occurring.

As with the BFM calculator, we process training data to

create a lookup table, then calculate the guess number for

each password. The mechanism for processing training data

is outlined in Algorithm 1. To calculate the guess number for

a password, we determine that password’s probability group.

Using the lookup table created from the training set, we

determine the number of guesses required to reach that prob-

ability group. We then add the number of guesses required to

reach the exact password within that probability group. This

is straightforward because once the Weir algorithm reaches a

given probability group, all terminals in that group are tried

in a deterministic order.

Because creating this lookup table is time-intensive, we

set a cutoff point of 50 trillion guesses past which we do

not calculate the guess number for additional passwords.

This allows most Weir-calculator experiments to run in 24

hours or less in our setup. Using the structures and termi-

nals learned from the training data, we can still determine

whether passwords that are not guessed by this point will

ever be guessed, but not exactly when they will be guessed.

Algorithm 1 Creation of a lookup table that, given a proba-

bility group, returns the number of guesses required for the

Weir algorithm to begin guessing terminals of that group. An

l.c.s. is a longest common substring, the longest substrings in

a probability group made from characters of the same type.

For example, for UUss9UUU, the l.c.s.’s would be UU, ss, 9,

and UUU. (In this example, U represents uppercase letters,

s represents lowercase letters, and 9 represents digits.)

T = New Lookup Table

for all structures s do
for all probability group pg ∈ s do

for all l.c.s. ∈ pg do
ci=Number of terminals of l.c.s.
pi=Probability of l.c.s. in training data

end for
probability =

∏
pi; size =

∏
ci

T .add: pg, probability, size
end for

end for
Sort(T ) by probability
Add to each value in (T ) the sum of prior size values

Distributed computation. Calculating guess numbers for

Weir’s algorithm becomes data intensive as Algorithm 1 gen-

erates a large number of elements to build the lookup table

T . To accelerate the process, we implemented a distributed

version of Algorithm 1 as follows. We split the top-most

loop into coarse-grained units of work that are assigned to

m tasks, each of which processes a subset of the structures

in s. Each task reads a shared dictionary with the training

data and executes the two internal loops of the algorithm.

Each iteration of the loop calculates the probability and size

for one probability group in s. This data is then sorted by

probability. A final, sequential pass over the sorted table

aggregates the probability group sizes to produce the starting

guess number for each probability group.

We implemented our distributed approach using Hadoop

[48], an open-source version of the MapReduce frame-

work [49]. In our implementation, all m tasks receive

equally sized subsets of the input, but perform different

amounts of work depending on the complexity of the struc-

tures in each subset. As a result, task execution times vary

widely. Nevertheless, with this approach we computed guess

numbers for our password sets in days, rather than months,

on a 64-node Hadoop cluster. The resulting lookup tables

store hundreds of billions of elements with their associated

probabilities and occupy up to 1.3 TB of storage each.
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Figure 1. The number of passwords cracked vs. number of guesses, per condition, for experiment E. This experiment uses the Weir calculator and our
most comprehensive training set, which combines our passwords with public data.

B. Entropy

To investigate how well entropy estimates correlate with

guess resistance, we compare our guess-number results for

each condition to two independently calculated entropy

approximations. First, we apply the commonly used NIST

guidelines, which suggest that each password-composition

rule contributes a specific amount of entropy and that the

entropy of the policy is the sum of the entropy contributed

by each rule. Our second approximation is calculated em-

pirically from the plaintext passwords in our dataset, using

a technique we described previously [9]. In this method,

we calculate for each password condition the entropy con-

tributed by the number, content, and type of each character,

using Shannon’s formula [50]. We then sum the individual

entropy contributions to estimate the total entropy of the

passwords in that condition.

V. FINDINGS

We calculated guess numbers under 31 different com-

binations of algorithm and training data. Although we do

not have space to include all the results, we distill from

them four major findings with application both to selecting

password policies and to conducting password research:

• Among conditions we tested, basic16 provides the

greatest security against a powerful attacker, outper-

forming the more complicated comprehensive8 con-

dition. We also detail a number of other findings

about the relative difficulty of cracking for the different

password-composition policies we tested.

• Access to abundant, closely matched training data is

important for successfully cracking passwords from

stronger composition policies. While adding more and

better training data provides little to no benefit against

passwords from weaker conditions, it provides a sig-

nificant boost against stronger ones.

• Passwords created under a specific composition policy

do not have the same guess resistance as passwords

selected from a different group that happen to meet the

rules of that policy; effectively evaluating the strength

of a password policy requires examining data collected

under that policy.

• We observe a limited relationship between Shannon

information entropy (computed and estimated as de-

scribed in Section IV-B) and guessability, especially

when considering attacks of a trillion guesses or more;

however, entropy can provide no more than a very

rough approximation of overall password strength.

We discuss these findings in the rest of this section.

We introduce individual experiments before discussing their

results. For convenience, after introducing an experiment we

may refer to it using a shorthand name that maps to some

information about that experiment, such as P for trained with

public data, E for trained with everything, C8 for special-

ized training for comprehensive8, etc. A complete list of

experiments and abbreviations can be found in Appendix A.

A. Comparing policies for guessability

In this section, we compare the guessability of passwords

created under the eight conditions we tested. We focus on

two experiments that we consider most comprehensive. In

each experiment we evaluate the guessability of all condi-

tions, but against differently trained guessing algorithms.

Experiment P4 is designed to simulate an attacker with

access to a broad variety of publicly available data for

training. It consists of a Weir-algorithm calculator trained on

all the public word lists we use and tested on 1000 passwords

from each condition. Experiment E simulates a powerful

attacker with extraordinary insight into the password sets

under consideration. It consists of a Weir-algorithm calcu-

lator trained with all the public data used in P4 plus 500
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Figure 2. The number of passwords cracked vs. the number of guesses,
per condition, for experiment P4. This experiment uses the Weir calculator
and trains on a variety of publicly available data.

passwords from each of our eight conditions. We test on 500

other passwords from those conditions, with two-fold cross-

validation for a total of 1000 test passwords. The results

from these experiments are shown in Figures 1 and 2.

As these figures suggest, which password-composition

policy is best at resisting guessing attacks depends on

how many guesses an attacker will make. At one million

and one billion guesses in both experiments, significantly

fewer blacklistHard and comprehensive8 passwords were

guessed than in any other condition.3 At one billion guesses

in experiment E, 1.4, 2.9, 9.5, and 40.3% of passwords

were cracked in comprehensive8, blacklistHard, basic16, and

basic8, respectively.

As the number of guesses increases, basic16 begins to

outperform the other conditions. At one trillion guesses, sig-

nificantly fewer basic16 passwords were cracked than com-

prehensive8 passwords, which were cracked significantly

less than any other condition. After exhausting the Weir-

algorithm guessing space in both experiments, basic16 re-

mains significantly hardest to crack. Next best at resisting

cracking were comprehensive8 and blacklistHard, perform-

ing significantly better than any other condition. Condition

comprehensive8 was significantly better than blacklistHard

in experiment P4 but not in experiment E. In experiment

E, 14.6, 26.4, 31.0% of passwords were cracked in basic16,

comprehensive8, and blacklistHard, respectively; in contrast,

63.0% of basic8 passwords were cracked.

Although guessing with the Weir algorithm proved more

effective, we also compared the conditions using BFM. The

findings (shown in Figure 3) are generally consistent with

those discussed above: basic16 performs best.

In prior work examining memorability and usability for

much of this dataset, we found that while in general less

secure policies are more usable, basic16 is more usable

than comprehensive8 by many measures [46]. This suggests

basic16 is an overall better choice than comprehensive8.

3All comparisons in Sections V-A, V-B, and V-C tested using PHFET,
significance level α = 0.05.
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Figure 3. The number of passwords cracked vs. the number of guesses,
using the BFM calculator trained on both our data and public data (B2). The
red vertical line at 50 trillion guesses facilitates comparison with the Weir
experiments. We stopped the Weir calculator at this point (as described in
Section IV-A3), but because the BFM algorithm is so much less efficient,
we ran it for many more guesses in order to collect useful data.

It is important to note that 16-character-minimum policies

are rare in practice. Hence, current guessing algorithms,

including the Weir algorithm, are not built specifically with

them in mind. Although we do not believe this affects our

overall findings, it may merit further investigation.

B. Effects of training-data selection

Like most practical cracking algorithms, the ones we use

rely on training data to determine guessing order. As a result,

it is important to consider how the choice of training data

affects the success of password guessing, and consequently

the guess resistance of a set of passwords. To address this,

we examine the effect of varying the amount and source of

training data on both total cracking success and on cracking

efficiency. Interestingly, we find that the choice of training

data affects different password-policy conditions differently;

abundant, closely matched training data is critical when

cracking passwords from harder-to-guess conditions, but less

so when cracking passwords from easier ones.

For purposes of examining the impact of training data, the

password-policy conditions we consider divide fairly neatly

into two groups. For the rest of this section, we will refer to

the harder-to-guess conditions of comprehensive8, basic16,

and blacklistHard as group 1, and the rest as group 2.

Training with general-purpose data. We first measure,

via three experiments, the effect of increasing the amount

and variety of training data. Experiment P3 was trained on

public data including the MySpace and RockYou password

lists as well as the inflection list and simple dictionary, and

tested on 1000 passwords from each of our eight conditions.

Experiment P4, as detailed in Section V-A, was trained on

everything from P3 plus the paid Openwall list. Experiment

E, also described in V-A, used everything from P4 plus

500 passwords from each of our conditions, using two-fold

cross-validation. Figure 4 shows how these three training

sets affect four example conditions, two from each group.
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Figure 4. Showing how increasing training data by adding the Openwall
list (P4) and then our collected passwords (E) affects cracking, for four
example conditions. Adding training data proves more helpful for the
group 1 conditions (top) than for the others (bottom).

As expected, cracking success increases as training data

is added. For group 1, adding Openwall increases total

cracking by 45% on average, while adding both Openwall

and our data provides an average 96% improvement; these

increases are significant for both experiments in all three

conditions. In group 2, by contrast, the increases are smaller

and only occasionally significant.

At one trillion and one billion guesses, the results are

less straightforward, but increasing training data remains

generally more helpful for cracking group 1 than group 2.

Adding Openwall alone is not particularly helpful for group

1 conditions, with few significant improvements at either

guessing point, but it actually decreases cracking at one

billion guesses significantly for several group 2 conditions.

(We hypothesize this decrease occurs because Openwall is

a dictionary and not a password set, so it adds knowledge

of structures and strings at the cost of accurately assessing

their probabilities.) At these guessing points, adding our

data is considerably more effective for group 1 than adding

Openwall alone, increasing cracking for each of the three

conditions by at least 50% (all significant). By contrast,

adding our data provides little to no improvement against

group 2 conditions at either guessing point.

Taken together, these results demonstrate that increas-

ing the amount and variety of information in the training

data provides significant improvement in cracking harder-

to-guess conditions, while providing little benefit and some-

times decreasing efficiency for easier-to-guess conditions.

Training with specialized data. Having determined that

training with specalized data is extremely valuable for crack-

ing group 1 passwords, we wanted to examine what quantity

of closely related training data is needed to effectively

crack these “hard” conditions. For these tests, we focus on

comprehensive8 as an example harder-to-guess condition,

using the easier-to-guess basic8 condition as a control; we

collected 3000 passwords each for these conditions.
In five Weir-algorithm experiments, C8a through C8e, we

trained on all the public data from P4, as well as between

500 and 2500 comprehensive8 passwords, in 500-password

increments. For each experiment, we tested on the remaining

comprehensive8 passwords. We conducted a similar set of

five experiments, B8a through B8e, in which we trained and

tested with basic8 rather than comprehensive8 passwords.
Our results, illustrated in Figure 5, show that incremen-

tally adding more of our collected data to the training

set improves total cracking slightly for comprehensive8

passwords, but not for basic8. On average, for each 500

comprehensive8 passwords added to the training set, 2%

fewer passwords remain uncracked. This effect is not linear,

however; the benefit of additional training data levels off

sharply between 2000 and 2500 training passwords. The

differences between experiments begin to show significance

around one trillion guesses, and increase as we approach the

total number cracked.
For basic8, by contrast, adding more collected passwords

to the training set has no significant effect on total cracking,

with between 61 and 62% of passwords cracked in each

experiment. No significant effect is observed at one million,

one billion, or one trillion guesses, either.
One way to interpret this result is to consider the diversity

of structures found in our basic8 and comprehensive8 pass-

word sets. The comprehensive8 passwords are considerably

more diverse, with 1598 structures among 3000 passwords,

as compared to only 733 structures for basic8. For com-

prehensive8, the single most common structure maps to 67

passwords, the most common 180 structures account for half

of all passwords, and 1337 passwords have structures that

are unique within the password set. By contrast, the most

common structure in basic8 maps to 293 passwords, the top

13 structures account for half the passwords, and only 565

passwords have unique structures. As a result, small amounts

of training data go considerably farther in cracking basic8

passwords than comprehensive8.

Weighting training data. The publicly available word

lists we used for training are all considerably larger than the

number of passwords we collected. As a result, we needed to

weight our data (i.e., include multiple copies in the training

set) if we wanted it to meaningfully affect the probabilities

used by our guess-number calculators. Different weightings

do not change the number of passwords cracked, as the same

guesses will eventually be made; however, they can affect

the order and, therefore, the efficiency of guessing.
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Figure 5. Top: Incremental increases in specialized training data have
limited effect on the basic8 condition (B8a-B8e). Bottom: Incremental
increases in specialized training data have a small but significant effect on
the comprehensive8 condition (C8a-C8e). Results from P4 (the same public
training data, no specialized training data) are included for comparison.

We tested three weightings, using 500 passwords from

each condition weighted to one-tenth, equal, and ten times

the cumulative size of the public lists. We tested each

weighting on 500 other passwords from each condition.

Overall, we found that weighting had only a minor effect.

There were few significant differences at one million, one

billion, or one trillion guesses, with equal weighting occa-

sionally outperforming the other two in some conditions.

From these results, we concluded that the choice of weight-

ing was not particularly important, but we used an equal

weighting in all other experiments that train with passwords

from our dataset because it provides an occasional benefit.

BFM training. We also investigated the effect of training

data on BFM calculator performance, using four training

sets: one with public data only, one that combined public

data with collected passwords across our conditions, and one

each specialized for basic8 and comprehensive8. Because the

BFM algorithm eventually guesses every password, we were

concerned only with efficiency, not total cracking. Adding

our cross-condition data had essentially no effect at either

smaller or larger numbers of guesses. Specialized training

for basic8 was similarly unhelpful. Specialized training for

comprehensive8 did increase efficiency somewhat, reaching

50% cracked with about 30% fewer guesses.

C. Effects of test-data selection

Researchers typically don’t have access to passwords

created under the password-composition policy they want

to study. To compensate, they start with a larger set of
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Figure 6. Passwords generated under the comprehensive8 condition
proved significantly easier to guess than passwords that conform to the
comprehensive8 requirements but are generated under other composition
policies. In experiment S1 (top), the Weir calculator was trained with only
public data; in experiment S2 (bottom), the Weir calculator was trained on
a combination of our data and public data.

passwords (e.g., the RockYou set), and pare it down by dis-

carding passwords that don’t meet the desired composition

policy (e.g., [1], [13]). A critical question, then, is whether

subsets like these are representative of passwords actually

created under a specific policy. We find that such subsets

are not representative, and may in fact contain passwords

that are more resistant to guessing than passwords created

under the policy in question.

In our experiments, we compared the guessability of 1000

comprehensive8 passwords to the guessability of the 206

passwords that meet the comprehensive8 requirements but

were collected across our other seven conditions (the com-
prehensiveSubset set). We performed this comparison with

two different training sets: public data, with an emphasis on

RockYou passwords that meet comprehensive8 requirements

(experiment S1); and the same data enhanced with our other

2000 collected comprehensive8 passwords (experiment S2).

Both experiments show significant differences between

the guessability of comprehensive8 and comprehensiveSub-

set test sets, as shown in Figure 6. In the two experi-

ments, 40.9% of comprehensive8 passwords were cracked

on average, compared to only 25.8% comprehensiveSubset

passwords. The two test sets diverge as early as one billion

guesses (6.8% to 0.5%).

Ignoring comprehensiveSubset passwords that were cre-

ated under basic16 leaves 171 passwords, all created under

less strict conditions than comprehensive8. Only 25.2% of

these are cracked on average, suggesting that subsets drawn

exclusively from less strict conditions are more difficult to

guess than passwords created under stricter requirements.

To understand this result more deeply, we examined the
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Figure 7. Relationship among the resistance of our collected password sets to heuristic cracking (experiment E); empirical entropy estimates we calculate
from those sets; and NIST entropy estimates for our password conditions.

distribution of structures in the two test sets. There are 618

structures in the 1000-password comprehensive8 set, com-

pared to 913 for comprehensiveSubset (normalized), indi-

cating greater diversity in comprehensiveSubset passwords.

This distribution of structures explains why comprehensive8

is significantly easier to guess.

We suspect this difference may be related to comprehen-

siveSubset isolating those users who make the most complex

passwords. Regardless of the reason for this difference,

however, researchers seeking to compare password policies

should be aware that such subsets may not be representative.

D. Guessability and entropy

Historically, Shannon entropy (computed or estimated by

various methods) has provided a convenient single statistic to

summarize password strength. It remains unclear, however,

how well entropy reflects the guess resistance of a password

set. While information entropy does provide a theoretical

lower bound on the guessability of a set of passwords [41],

in practice a system administrator may be more concerned

about how many passwords can be cracked in a given num-

ber of guesses than about the average guessability across the

population. Although there is no mathematical relationship

between entropy and this definition of guess resistance, we

examine whether the two are correlated in practice. To do

this, we consider two independent measures of entropy, as

defined in Section IV-B: an empirically calculated estimate

and a NIST estimate. For both measures, we find that en-

tropy estimates roughly indicate which composition policies

provide more guess resistance than others, but provide no

useful information about the magnitude of these differences.

Empirically estimated entropy. We ranked our password

conditions based on the proportion of passwords cracked in

our most complete experiment (E) at one trillion guesses,

and compared this to the rank of conditions based on

empirically estimated entropy. We found these rankings,

shown in Figure 7, to be significantly correlated (Kendall’s

τ = 0.71, Holm-corrected p = 0.042). However, at one

million or one billion guesses, the correlation in rankings is

no longer significant (Holm-corrected p = 0.275, 0.062). We

found the same pattern, correlation at one trillion guesses

but not one billion or one million, in our largest public-

data experiment (P4). These results indicate entropy might

be useful when considering an adversary who can make a

large number of guesses, but not when considering a smaller

number of guesses.

Further, empirically estimated entropy did not predict the

ranking of dictionary8, even when considering a large num-

ber of guesses. This condition displayed greater resistance to

guessing than basic8, yet its empirically estimated entropy

was lower. This might indicate a flaw in entropy estimation,

a flaw in the guessing algorithm, or an innate shortcoming

of the use of entropy to predict guessability. Since entropy

can only lower-bound the guessability of passwords, it is

possible for the frequency distribution of dictionary8 to have

low entropy but high guess resistance. If this is the case,

Verheul theorized that such a distribution would be optimal

for password policy [51].

NIST entropy. Computing the NIST entropy of our

password conditions produces three equivalence classes, as

shown in Figure 7, because the heuristics are too coarse to

capture all differences between our conditions. First, NIST

entropy does not take into account the size of a dictionary

or details of its implementation, such as case-insensitivity

or removal of non-alphabetical characters before the check.

All five of our dictionary and blacklist conditions meet

the NIST requirement of a dictionary with at least 50,000

words [11]. Our results show that these variations lead to

password policies with very different levels of password

strength, which should be considered in a future heuristic.

Second, the NIST entropy scores for basic16 and compre-

hensive8 are the same, even though basic16 appears to be

much more resistant to powerful guessing attacks. This may
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suggest that future heuristics should assign greater value to

length than does the NIST heuristic.

Perhaps surprisingly, the equivalence classes given by

NIST entropy are ordered correctly based on our results

for guessability after 50 trillion guesses. Though it fails to

capture fine-grained differences between similar password

conditions, NIST entropy seems to succeed at its stated

purpose of providing a “rough rule of thumb” [11].

We stress that although both measures of entropy provide

a rough ordering among policies, they do not always cor-

rectly classify guessability (see for example dictionary8),

and they do not effectively measure how much additional

guess resistance one policy provides as compared to another.

These results suggest that a “rough rule of thumb” may be

the limit of entropy’s usefulness as a metric.

VI. DISCUSSION

We next discuss issues regarding ethics, ecological valid-

ity, and the limitations of our methodology.

Ethical considerations. Most of our results rely on

passwords collected via a user study (approved by our insti-

tution’s IRB). However, we also use the RockYou and MyS-

pace password lists. Although these have collectively been

used by a number of scientific works that study passwords

(e.g., [2], [13], [25], [30]), this nevertheless creates an ethical

conundrum: Should our research use passwords acquired

illicitly? Since this data has already been made public and is

easily available, using it in our research does not increase the

harm to the victims. We use these passwords only to train

and test guessing algorithms, and not in relationship with

any usernames or other login information. Furthermore, as

attackers are likely to use these password sets as training

sets or cracking dictionaries, our use of them to evaluate

password strength implies our results are more likely to be

of practical relevance to security administrators.

Ecological validity. As with any user study, our results

must be understood in context. As we describe in Sec-

tion I, our participants are somewhat younger and more

educated than the general population, but more diverse than

typical small-sample password studies. The passwords we

collected did not protect high-value accounts, reflecting a

long-standing limitation of password research.

To further understand this context, we tested two

password-creation scenarios (Section III-C): a survey sce-

nario directly observing user behavior with a short-term,

low-value account, and an email scenario simulating a

longer-term, higher-value account. In both cases, users knew

they might be asked to return and recall the password. Our

users provided stronger passwords (measured by guessability

and entropy) in the email scenario, a result consistent with

users picking better passwords to protect a (hypothetical)

high-value e-mail account than a low-value survey account.

To get real-world measures of password-related behavior,

we surveyed users of Carnegie Mellon University’s email

system, which uses the comprehensive8 policy [9]. Com-

paring these survey results to the reports of our MTurk

study participants, we find that on several measures of

behavior and sentiment, the university responses (n = 280)

are closer to those of our comprehensive8 participants

than those of any other condition. For example, we asked

MTurk participants who returned for the second half of the

study whether they stored the password they had created

(reassuring them they would get paid either way); we

similarly asked university participants whether they store

their login passwords. 59% of the university respondents

report writing down their password, compared with 52%

of comprehensive8 participants and a maximum of 37%

for other MTurk conditions. These results show that study

participants make different decisions based on password-

composition requirements, and that in one condition their

behavior is similar to people using that policy in practice.

We designed our study to minimize the impact of sam-

pling and account-value limitations. All our findings result

from comparisons between conditions. Behavior differences

caused by the ways in which conditions differ (e.g., us-

ing a different technique to choose longer passwords than

shorter ones) would be correctly captured and appropriately

reflected in the results. Thus, we believe it likely that

our findings hold in general, for at least some classes of

passwords and users.

Other limitations. We tested all password sets with a

number of password-guessing tools; the one we focus on

(the Weir algorithm) always performed best. There may exist

algorithms or training sets that would be more effective

at guessing passwords than anything we tested. While this

might affect some of our conclusions, we believe that most

of them are robust, partly because many of our results are

supported by multiple experiments and metrics.

In this work, we focused on automated offline password-

guessing attacks. There are many other real-life threats to

password security, such as phishing and shoulder surfing.

Our analyses do not account for these. The password-

composition policies we tested can induce different behav-

iors, e.g., writing down or forgetting passwords or using

password managers, that affect password security. We report

on some of these behaviors in prior work [46], but space

constraints dictate that a comprehensive investigation is

beyond the scope of this paper.

VII. CONCLUSION

Although the number and complexity of password-

composition requirements imposed by systems administra-

tors have been steadily increasing, the actual value added

by these requirements is poorly understood. This work takes

a substantial step forward in understanding not only these

requirements, but also the process of evaluating them.

We introduced a new, efficient technique for evaluating

password strength, which can be implemented for a variety
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of password-guessing algorithms and tuned using a variety

of training sets to gain insight into the comparative guess re-

sistance of different sets of passwords. Using this technique,

we performed a more comprehensive password analysis than

had previously been possible.

We found several notable results about the comparative

strength of different composition policies. Although NIST

considers basic16 and comprehensive8 equivalent, we found

that basic16 is superior against large numbers of guesses.

Combined with a prior result that basic16 is also easier for

users [46], this suggests basic16 is the better policy choice.

We also found that the effectiveness of a dictionary check

depends heavily on the choice of dictionary; in particular,

a large blacklist created using state-of-the-art password-

guessing techniques is much more effective than a standard

dictionary at preventing users from choosing easily guessed

passwords.

Our results also reveal important information about con-

ducting guess-resistance analysis. Effective attacks on pass-

words created under complex or rare-in-practice composition

policies require access to abundant, closely matched training

data. In addition, this type of password set cannot be charac-

terized correctly simply by selecting a subset of conforming

passwords from a larger corpus; such a subset is unlikely to

be representative of passwords created under the policy in

question. Finally, we report that Shannon entropy, though

a convenient single-statistic metric of password strength,

provides only a rough correlation with guess resistance and

is unable to correctly predict quantitative differences in

guessability among password sets.
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APPENDIX

Here we detail the complete training and test data used

in each of our Weir-algorithm experiments. The first column

gives the experiment number. The next three columns list the

three types of training data used to create a Weir-calculator

experiment. The structures column shows the wordlists used

to generate the set of character-type structures that define the

Weir algorithm’s search space. The wordlists in the digits
and symbols column determine the probabilities for filling

combinations of digits and symbols into these structures. The

wordlists in the strings column determine the probabilities

for filling alphabetic strings into structures. In most cases,

we train strings on as much data as possible, while restricting

structure and digit/symbol training to wordlists that contain a

quality sample of multi-character-class passwords. The final

column describes the password set(s) we attempted to guess.

We also list the complete training and test data used

in each of our BFM experiments. The experiment number

and test set columns are the same as in the Weir subtable.

Training for the BFM calculator, however, uses only one

combined wordlist per experiment; these lists are detailed

in the training set column.

Abbreviations for all the training and test sets we use are

defined in the key below the tables.
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Weir experiment descriptions
Name Training sets Testing Set

Structures Digits and symbols Strings

Trained from public password data
P1 MS8 MS MS 1000-All
P2 MS8 MS MS, W2, I 1000-All
P3 MS8 MS, RY MS, W2, I, RY 1000-All
P3-C8 MSC MS, RY MS, W2, I, RY 1000-C8
P3-B16 MS16 MS, RY MS, W2, I, RY 1000-B16
P4 MS8, OW8 MS, RY, OW MS, W2, I, RY, OW 1000-All
P4-B16 MS16, OW16 MS, RY, OW MS, W2, I, RY, OW 1000-B16

Trained on half of our dataset, weighted to 1/10th, equal-size, or 10x the cumulative size of the public data
X1/10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X1 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All
X10 MS8, 500-All MS, RY, 500-All MS, W2, I, RY, 500-All 500-All

Everything
E MS8, OW8, 500-All MS, RY, OW, 500-All MS, W2, I, RY, OW, 500-All 500-All

Testing password subsets that meet comprehensive8 requirements
S0a MSC, OWC MS, OW MS, W2, I, OW 1000-C8, 206-C8S
S0b MSC, OWC, 2000-C8 MS, OW, 2000-C8 MS, W2, I, OW, 2000-C8 1000-C8, 206-C8S
S1 MSC, OWC, RYCD MS, OW, RY MS, W2, I, OW, RY 1000-C8, 206-C8S
S2 MSC, OWC, 2000-C8, MS, OW, 2000-C8, RY MS, W2, I, OW, 2000C8, RY 1000-C8, 206-C8S

RYCD

Split ratio testing on basic8
B8a MS8, OW8, 500-B8 MS, RY, OW, 500-B8 MS, W2, I, RY, OW, 500-B8 2500-B8
B8b MS8, OW8, 1000-B8 MS, RY, OW, 1000-B8 MS, W2, I, RY, OW, 1000-B8 2000-B8
B8c MS8, OW8, 1500-B8 MS, RY, OW, 1500-B8 MS, W2, I, RY, OW, 1500-B8 1500-B8
B8d MS8, OW8, 2000-B8 MS, RY, OW, 2000-B8 MS, W2, I, RY, OW, 2000-B8 1000-B8
B8e MS8, OW8, 2500-B8 MS, RY, OW, 2500-B8 MS, W2, I, RY, OW, 2500-B8 500-B8

Split ratio testing on comprehensive8
C8test1/10 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8
C8test1 MSC, 500-C8 MS, RY, 500-C8 MS, W2, I, RY, 500-C8 2500-C8

C8a MSC, OWC, 500-C8 MS, RY, OW, 500-C8 MS, W2, I, RY, OW, 500-C8 2500-C8
C8b MSC, OWC, 1000-C8 MS, RY, OW, 1000-C8 MS, W2, I, RY, OW, 1000-C8 2000-C8
C8c MSC, OWC, 1500-C8 MS, RY, OW, 1500-C8 MS, W2, I, RY, OW, 1500-C8 1500-C8
C8d MSC, OWC, 2000-C8 MS, RY, OW, 2000-C8 MS, W2, I, RY, OW, 2000-C8 1000-C8
C8e MSC, OWC, 2500-C8 MS, RY, OW, 2500-C8 MS, W2, I, RY, OW, 2500-C8 500-C8

BFM experiment descriptions
Name Training set Test set

B1 RY, MS, I 1000-All
B2 RY, MS, I, 500-All 500-All
B3 RY, MS, I, 2000-B8 1000-B8
B4 RY, MS, I, 2000-C8 1000-C8

Key to password sets
RY RockYou list I inflection list

RYCD RY, filtered w/ all reqs. of C8 W2 simple Unix dictionary
MS MySpace list OW paid Openwall dictionary

MS8 MS, filtered w/ min length of 8 OW8 OW, filtered w/ min length of 8
MS16 MS, filtered w/ min length of 16 OW16 OW, filtered w/ min length of 16
MSC MS, filtered w/ min length of 8 OWC OW, filtered w/ min length 8

and character class reqs. of C8 and character class reqs. of C8

n-All n passwords from each of our conditions n-B8 n basic8 passwords
n-B16 n basic16 passwords n-C8 n comprehensive8 passwords
n-C8S n comprehensiveSubset passwords n-RYCD n RYCD passwords
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