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Abstract—
Obfuscation-based private web search (OB-PWS) solutions

allow users to search for information in the Internet while
concealing their interests. The basic privacy mechanism in
OB-PWS is the automatic generation of dummy queries that
are sent to the search engine along with users’ real requests.
These dummy queries prevent the accurate inference of search
profiles and provide query deniability. In this paper we propose
an abstract model and an associated analysis framework to
systematically evaluate the privacy protection offered by OB-
PWS systems. We analyze six existing OB-PWS solutions using
our framework and uncover vulnerabilities in their designs.
Based on these results, we elicit a set of features that must
be taken into account when analyzing the security of OB-
PWS designs to avoid falling into the same pitfalls as previous
proposals.

I. INTRODUCTION

Web search has become a regular activity in our lives, as

it is often the fastest and most effective way of finding in-

formation. Web search service providers, commonly known

as search engines, maintain a database of pointers to pages

in the Web. These pointers are indexed by keywords, which

relate to the content of the associated pages. In order to

perform a search in this database, a user composes a query

formed by one or more keywords related to the topics she is

interested in, and sends it to the search engine. The engine,

based on the keywords contained in the query, compiles a

list of web pages likely to contain the information of interest

and returns it to the user.

Search queries are closely related to the issues we are

interested or concerned about, and are thus a rich source

to perform user profiling. This raises privacy concerns with

respect to social sorting and discrimination, particularly as

potentially sensitive information can be inferred from search

queries, such as income level, health issues, or political

beliefs [19], [29].

Different approaches can be taken to address this problem.

Users may connect to the search engine through an anony-

mous web browsing system [3], [8], [26], which makes them

appear as having a different identity in each session; or they

may be identifiable but conceal their search profile. We note

that these two approaches are complementary. Anonymizers

hinder the creation of search profiles through query unlink-

ability; while concealing the search profile makes it harder

to re-identify anonymous users through their queries.
Private information retrieval (PIR) [16], [21] is a class

of solutions to conceal search queries. PIR allows a user

to retrieve a record from a database without the database

owner being able to determine which record was accessed,

and PIR schemes have also been proposed in the context of

web search [4]. These cryptography-based solutions provide

strong privacy guarantees, but require the search engine to

implement and run the protocols. Search engines however

do not have any incentives to implement costly protocols

they cannot profit from, and thus the deployment of these

solutions may not be realistic in practice.
In this paper we focus on a category of private web search

solutions that we call obfuscation-based private web search

(OB-PWS) systems [9], [11], [12], [13], [14], [18], [20],

[22], [23], [25], [28], [30]. One of the main advantages of

OB-PWS over PIR solutions is that they do not require the

cooperation of the search engine. The basic OB-PWS mech-

anism consists in automatically generating dummy (fake)

search queries. These dummy queries, generated by an OB-

PWS tool (e.g., a browser plugin), are not necessarily relate

to the actual interests of the user. As a result, dummy queries

introduce “noise” in the user profile obtained by the search

engine, enabling the concealment of her actual interests.

Furthermore, if confronted with a sensitive or uncomfortable

query, users may claim that it was generated by the OB-PWS

tool and obtain plausible deniability about having issued the

query.
We note that besides protecting individual users, obfus-

cation diminishes the overall utility of search profiles to

search engines and, assuming that a sufficiently large user

base adopts OB-PWS solutions, it may reduce the economic

incentives to perform mass sophisticated profiling.
The contributions of this paper are the following:

• We propose an abstract model that captures the key ele-

ments of OB-PWS systems and models the capabilities

of a strategic adversary.

• We describe an evaluation framework for OB-PWS

strategies. We define privacy properties for both search

profiles and individual queries, point out the elements

that must be considered in the security analysis, and

propose metrics to evaluate the effectiveness of differ-

ent dummy generation strategies.
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• Based on our model and evaluation framework, we

evaluate six proposed OB-PWS systems and uncover

vulnerabilities in their designs as well as flaws in their

original evaluations.

• We identify key features in OB-PWS systems and

discuss their impact on the system properties.

• We provide an overview of open problems and chal-

lenges that need to be addressed in order to design

effective and robust OB-PWS tools.

II. AN ABSTRACT MODEL FOR OBFUSCATION-BASED

PRIVATE WEB SEARCH (OB-PWS) SYSTEMS

We consider a model in which a user Alice queries a

web search engine to find information in the web. Alice’s

queries consist of a set of keywords that are related to the

information she is looking for. Keywords are processed by

the search engine in order to find relevant web pages and

return them to Alice. We assume that Alice does not connect

to the search engine through an anonymous communication

channel [3], [8], [26], and thus consider that her queries can

be linked together.

Alice’s queries can be associated to topics or categories
according to the keywords in the query and other contextual

information. Alice’s search profile is modeled as a multi-

nomial distribution X = {xi} that we call real profile.

Each element xi of Alice’s profile represents her level of

interest in category or topic i. Usually, xi is computed as the

fraction of queries containing keywords related to category i,
according to some semantic classification algorithm (SCA).

We note that modeling the profiles as multinomial distri-

butions does not impose constraints on the semantic classi-

fication algorithm SCA that associates queries to categories.

Categories may range from very broad (e.g., health, sports,

music) to very specific, to the extreme of considering each

individual keyword as a category.

The OB-PWS adversary is an honest-but-curious search

engine, or any other entity with access to the user search

queries (e.g., an eavesdropper). The goal of the adversary

is to infer private information about Alice from her search

profile and queries. For this, the adversary records all the

queries received from Alice, and builds an observed profile
Y = {yi}. When all the queries received are real queries

issued by Alice herself, Y accurately represents Alice’s real

profile X (i.e., Y =X).

An OB-PWS tool is a piece of software (e.g., a browser

plugin) that runs in Alice’s computer. This tool generates

dummy queries, denoted as D, that are submitted along

with Alice’s real queries, denoted as R. Dummy queries are

fake queries that are automatically generated by the OB-

PWS tool, and thus are not necessarily related to Alice’s

real interests. Dummy queries mitigate the privacy threats

derived from search profiling by obfuscating the observed

profile Y , which now contains a mix of real and dummy

queries (i.e., Y �= X). Without loss of generality our

model abstracts dummy keywords attached to user queries

as separate queries sent simultaneously (e.g., the query

“real OR dummy” is modeled as two queries “real” and

“dummy”).

The OB-PWS tool generates dummy queries according to

a dummy generation strategy DGS. Typically, the DGS uses

a semantic classification algorithm SCADGS that provides a

mapping between the queries and the categories associated

with them. The DGS establishes the ratio of dummy queries

to be generated, their content and semantics, their distribu-

tion amongst categories, the metadata associated to them, the

time when they are issued, and any other feature relevant for

the operation of the OB-PWS tool.

In order to be effective, dummy queries need to be

indistinguishable from real queries. Otherwise the adversary

may be able to filter them out and recover a filtered profile
Z = {zi} that is similar to the real profile X – thus

neutralizing the effect of the OB-PWS tool. Similarly, if

the DGS distorts the observed profile Y in a way that is

predictable and invertible, the adversary can remove (part

of) the noise and obtain a filtered profile Z that is a less

noisy version of X than Y .

We consider that the filtering of Y to obtain Z combines

two algorithms. The first is the dummy classification algo-
rithm (DCA). The function of the DCA is to classify queries

as either real QR or dummy QD, based on relevant features

of the dummy generation strategy, such as query semantics,

grammar, timing, or metadata. When constructing the filtered

profile Z, the adversary discards queries QD classified as

dummies and only takes into account queries QR classified

as real. The DCA fully succeeds in filtering dummy queries

when all queries D and R are correctly classified as QD

and QR, respectively. If the classification of a query as QR

or QD is independent of the query actually being real or

dummy, then we say that the DCA fails to provide any useful

information to the adversary.

The second component is the profile filtering algorithm
(PFA). This algorithm attempts to predict the way in which

the dummy queries added by the DGS modify each of the

components of Alice’s real profile, and then invert their

effect to recover a filtered profile Z = {zi} that better

represents the actual interests of the user. The PFA fully

succeeds when the filtered profile Z does not contain any

noise (i.e., Z = X).

Note that the DCA and PFA algorithms benefit from

each other: more information about the real profile X helps

identifying dummy queries, and vice versa. We assume the

adversary takes advantage of this and runs the algorithms

iteratively, refining the filtering.

Figure 1 summarizes the elements of the model. From

left to right the figure displays a user issuing real queries
R which can be represented (according to some SCA) as a

profile X . The OB-PWS tool installed in the user’s computer

receives as input the user’s real queries R and automatically
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Figure 1. An abstract model for obfuscation-based private web search

generates dummy queries D according to its dummy gener-
ation strategy DGS and associated semantic classification
algorithm SCADGS. Both real and dummy queries are sent

to the adversarial web search service provider, who (ideally)

cannot distinguish them and thus are represented as Q.

The observed profile Y is a representation of all Q queries

according to some SCA of the adversary’s choice. Further,

the adversary can implement dummy classification DCA and

profile filtering PFA algorithms that exploit vulnerabilities in

the DGS. The former is used to classify queries Q as real

QR or dummy QD, while the latter reverses the obfuscation

introduced by the DGS in Y in order to obtain the filtered
profile Z. The DCA and PFA are applied iteratively (using

an SCA to translate queries to semantic categories) to

both reduce the amount of noise in Z and enhance the

distinguishability of real and dummy queries.

III. EVALUATION FRAMEWORK FOR OB-PWS

STRATEGIES

In this section we outline an evaluation framework for

OB-PWS systems. We define privacy properties for both

search profiles and individual queries, point out the elements

that must be considered in the analysis, and propose metrics

to assess and compare the effectiveness of different dummy

generation strategies with respect to the defined privacy

properties.

We recall that the query-based and profile-based analyses

are complementary, i.e., succesfully identifying dummy and

real queries leaks information about the real profile X ,

and vice versa. A key element connecting both types of

analysis is the semantic classification algorithm, SCA. The

function of the SCA is to translate query logs into profiles,

by associating queries to profile categories.

The evaluation of an OB-PWS dummy generation strategy

(DGS) requires exploring the possible adversarial strategies

(DCA, SCA, and PFA) and their success in: (1) recovering

the user’s real profile X; and (2) identifying with a high

degree of certainty the user’s real queries R.

A. Profile-Based Analysis.

Our profile-based analysis aims to measure the uncertainty

of the adversary on Alice’s real profile X after it has

been obfuscated by the dummy generation strategy DGS.

Figure 2. Pr[X = X] in the profile space.

Analyzing the level of profile privacy provided by a dummy

generation strategy requires exploring semantic classification

and profile filtering algorithms that could be implemented by

the adversary in order to filter observed profiles and extract

as much information as possible about user preferences and

interests. The amount of profile information leaked by the

DGS is an indicator of the level of protection provided by an

OB-PWS design. This is given by the difference between the

a priori and a posteriori uncertainty of the adversary on the

real profile X , i.e., before and after obtaining the observed

Y and filtered Z profiles.

We assume that the adversary has background information

on the interests of the user population (e.g., which search

topics are more popular). We model this information as a

random variable X . Pr[X = X] describes the (a priori)

probability that a user has a particular profile X , where X
is a vector with as many dimensions as categories considered

by the SCA. Figure 2 shows an example of the probability

density Pr[X = X], simplified to three dimensions, i.e.,

profiles X = {x1, x2, x3} that have three components 0 ≤
xi ≤ 1 such that

∑
i x1 = 1. Darker areas represent highly

likely profiles, while lighter areas refer to rare profiles. We

measure the adversary’s (a priori) uncertainty on X as the

entropy [27] of X , H(X ).
The adversary can construct an observed profile Y with

the queries submitted by the user and the OB-PWS tool.

Let Y be a random variable representing the probability

of occurrence of observed profiles, and let EY denote the

conditional entropy (also known as equivocation) of X given

Y:

EY = H(X|Y) = H(X ,Y)−H(Y) .
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EY is the average uncertainty of the adversary on real

profiles X ∈ X given observed profiles Y ∈ Y . The average

amount of information leaked by observed profiles on real

profiles is given by H(X )− EY .
After recovering Y , a strategic adversary aware of the use

of the OB-PWS tool can apply DCA and PFA algorithms to

obtain a filtered profile Z. We define Z and EZ analogously

to Y and EY :

EZ = H(X|Z) = H(X ,Z)−H(Z) .
EZ is the average uncertainty of a strategic adversary on

real profiles X ∈ X given filtered profiles Z ∈ Z . The

average amount of profile information leaked by the DGS

on real profiles is given by H(X )− EZ .
An OB-PWS system provides perfect profile protection

when the adversary is unable to gain any information about

Alice’s real profile X from Z; i.e., EZ = H(X ). Conversely,

when EZ = 0 the information leaked by the DGS is H(X ),
and the adversary can perfectly reconstruct real profiles X
from filtered profiles Z . Formally, ∀Z ∈ Z , ∃X ∈ X such

that Pr[X = X|Z = Z] = 1.
In this paper we use EZ as a metric to illustrate how

previous analyses of OB-PWS tools oversee information

leaked by the used DGS hence overestimating the protection

provided by these systems. However, we note that EZ only

gives a measure of the average level of protection provided

by a dummy generation strategy to user profiles. When

EZ < H(X ), this metric does not give any guarantee on the

protection given to specific individual profiles, and further

metrics should be taken into account in a comprehensive

analysis.

B. Query-Based Analysis
One of the goals of the OB-PWS dummy generation strat-

egy DGS is to issue dummy queries D that are indistinguish-

able from real queries R. A query-based analysis requires

first studying which features of the DGS (e.g., semantics,

metadata) could be exploited by a DCA to distinguish

between real and dummy queries. Perfect query protection
is provided when for all possible dummy classification

algorithms DCA the probability of a query being classified

as QR (or QD) is independent of the query actually being

real R or dummy D; i.e., Pr[QR|Q = R] = Pr[QR|Q = D],
and analogously, Pr[QD|Q = R] = Pr[QD|Q = D].
Figure 3 shows the probabilities associated with the dummy

classification algorithm.
On the other hand, if the adversary can implement

a dummy classification algorithm DCA that classifies all

queries correctly (i.e., Pr[R|QR] = Pr[D|QD] = 1), then

the OB-PWS system offers no query privacy protection. Note

that this implies that the filtered profile will contain all real

queries and no dummies, and thus Z = X and EZ = 0.
We consider two query-based privacy properties to eval-

uate the protection offered by a DGS: unobservability,

Figure 3. DCA

denoted as U , and deniability, denoted as D. A real query

R is unobservable when the adversary classifies it as a

dummy query QD. We recall that queries classified as QD

are discarded when constructing the filtered profile Z. Thus,

unobservable queries hinder the reconstruction of Z by

misrepresenting the weight of the categories associated with

unobservable queries.

We define the average level of unobservability (U) pro-

vided by a DGS to user queries as the fraction of real queries

R that are misclassified as dummies QD by the adversary’s

DCA:

U = Pr[QD|Q = R].

Unobservability ranges from U = 0, when all real queries

are correctly identified, to U = Pr[D], when real queries

are misclassified as QD at the same rate as the ratio dummy

queries to total queries Pr[D] = D
R+D . We assume that for a

non-trivial DCA, the adversary never misclassifies more real

queries than correctly classifies dummies, i.e., Pr[QD|Q =
R] ≤ Pr[QD|Q = D].

Even if some (or many) of the users’ queries are unob-

servable, a fraction Pr[QR|Q = R] of real user queries are

still classified as real by the adversary and taken into account

for the construction of the filtered profile Z. If a significant

fraction Pr[QR|Q = D] of dummy queries are also classified

as QR, the user can plausibly deny having issued a query

R, and claim instead that the query was in fact a dummy

D generated by the OB-PWS tool. We measure the average

level of deniability (D) provided by a DGS to user queries

as:

D = Pr[D|QR] =
Pr[QR|Q = D] · Pr[D]

Pr[QR]
.

Deniability ranges from D = 0, when no dummy queries

are misclassified as QR, to D = Pr[D], when dummy and

real queries are classified as QR with the same probability

(Pr[QR|Q = D] = Pr[QR|Q = R]) and thus the adversary’s

best guess can only be based on his a-priori information on

the proportion of dummy queries issued by the OB-PWS

tool.

Table I offers a summary of the notation we have intro-

duced throughout this section.
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Table I
SUMMARY OF NOTATION

Symbol Meaning

R Real query issued by the user
D Dummy query issued by the OB-PWS tool
Q Query (real or dummy) observed by the adversary

X = {xi} Real Profile. Multinomial distribution representing the
user’s level of interest in different categories according
to some SCA

Y = {yi} Observed Profile. Multinomial distribution representing
the adversary’s view of the interests of the user different
categories according to some SCA

Z = {zi} Filtered Profile. Multinomial distribution representing the
adversary’s view of the interests of the user according to
some SCA after applying DCA and PFA algorithms

QR Query (R or D) that the adversary classifies as real
QD Query (R or D) that the adversary classifies as dummy
D Deniability
U Unobservability

DGS Dummy generation strategy of the OB-PWS system
SCA Semantic classification algorithm that associates queries

to the categories considered in the profile
DCA Dummy classification algorithm implemented by the ad-

versary that exploits weaknesses in the DGS to classify
queries as either QR or QD

PFA Profile filtering algorithm implemented by the adversary
that exploits weaknesses in the DGS to predict the noise
added by the DGS to X in order to filter it out of Y

X Random variable describing the probability over all pos-
sible real profiles X

Y Random variable describing the probability over all pos-
sible observed profiles Y

Z Random variable describing the probability over all pos-
sible filtered profiles Z

E• Equivocation or conditional entropy representing the av-
erage uncertainty of the adversary on real profiles X
given profiles •, • = {Y, Z}

IV. OBFUSCATION-BASED

PRIVATE WEB SEARCH

In this section we review six OB-PWS systems that have

been proposed in the literature. We consider that these

papers, which implement various different strategies, are a

good representation of the state-of-the-art in obfuscation-

based private web search.

A. TrackMeNot: Resisting Surveillance in Web Search

TrackMeNot (TMN) is a popular1 browser plugin de-

signed by Howe and Nissembaum [18]. TMN generates

dummy queries, D, that are sent together with Alice’s real

queries, R, in order to introduce noise in the observation of

the adversary and prevent the recovery of Alice’s search

profile X . TMN implements a number of strategies to

generate dummy queries. Although TMN focuses mainly on

generating plausible dummy queries, it seeks profile privacy

protection (informally defined as dissimilarity between the

real and observed profiles) rather than query deniability.

1As of March 2012, Mozilla reports more than 42 000 users of TMN
(https://addons.mozilla.org/en-US/firefox/addon/trackmenot/).

TMN does not formally define privacy properties and its

security is not evaluated against an adversary that is aware

of the plugin and tries to neutralize its effect [18].

TMN has been found to be vulnerable to DCA attacks that

exploit the semantics [2] and grammatical construction [5] of

dummy queries to distinguish them from real queries. Naı̈ve

machine learning techniques [24] have also been shown to

be effective in distinguishing dummy queries, assuming that

a sample of Alice’s browsing history (i.e., real queries) is

available for training the algorithms.

There are a number of other features in the DGS of TMN

that could be exploited by a DCA to identify and filter out

dummy queries. In TMN, dummy queries are composed by

keywords drawn from a “Dynamic Query List” [2] initialized

with a list of common query terms extracted from: i) RSS

feeds from popular websites such as Slashdot or CNN, and

ii) a list of popular search terms (e.g., extracted from Google

Trends2).

The initialization sources of the Dynamic Query List

are public. Let “popular” refer to keywords that appear

frequently in the Dynamic Query List. A query Qpopular

that does not contain any “popular” keywords, can be thus

classified as QR, and enjoys a low level of unobservability;

i.e., Pr[QD|R = Qpopular] ≈ 0. Note that these queries

are not deniable either, as Alice cannot plausibly claim

that the OB-PWS tool generated a query Qpopular; i.e.,

Pr[D|QR = Qpopular] ≈ 0.

TMN updates the Dynamic Query List with keywords

from Alice’s real queries, so that future dummy queries

are plausible and concordant with her search history. While

this strategy enhances individual query unobservability and

deniability, it also reduces profile obfuscation, as dummy

queries are distributed in categories similarly to real queries.

Therefore, even if some dummy queries are misclassified

as real, they will only introduce small amounts of noise

in the filtered profile – ultimately defeating TMN’s goal of

obfuscating user interests and preferences.

TMN also specifies techniques for constructing the meta-

data of dummy queries. The reuse of real queries’ metadata

in dummy queries makes the tool vulnerable to DCAs that

exploit query metadata. “Live Header Maps” ensure that

dummy requests generated by TMN have as headers the

last set of headers issued by the browser. Hence, every

time a query Qnew headers with new headers is received, the

DCA determines that the query is real, as otherwise the

headers would have remained unaltered; i.e., Pr[QD|R =
Qnew headers] ≈ 0), and Pr[D|QR = Qnew headers] ≈ 0. In other

words, real queries containing new values in the header are

observable and undeniable.

Finally, TMN implements a “Cookie Anonymization”

mechanism that mandates that cookies are only sent with

dummy queries. TMN assumes that queries sent without

2http://www.google.com/trends

495



cookie (Qcookie) are anonymous, and not linkable to queries

sent with cookie (Qcookie). However, it has been shown that

browser fingerprinting techniques can be used to trivially

link together all the queries sent by a browser [10]. Thus,

the adversary can exploit the presence or absence of a cookie

as an indicator of whether the query is real or dummy (i.e.,

Pr[QD|R = Qcookie] ≈ 0, and Pr[D|QR = Qcookie] ≈ 0).

The various exploitable features of TMN’s dummy gener-

ation strategy reviewed in this section enable an adversary to

implement a DCA that classifies queries correctly with high

probability. Distinguishing and filtering out dummy queries

helps the adversary refine the filtered profile Z, so that it is

an accurate reconstruction of Alice’s real profile X .

B. GooPIR: h(k)-Private Information Retrieval
from Privacy-Uncooperative Queryable Databases

GooPIR3 [9], similarly to TMN, selects keywords from

a public dictionary to construct dummy queries. For each

of Alice’s real queries R, GooPIR generates k − 1 dummy

queries D, which are submitted together with R. The si-

multaneous submission of real and dummy queries prevents

the adversary from exploiting query timing or metadata to

identify dummies. On the other hand this strategy does not

conceal when Alice is submitting a real query. Although

sequences of real query timings may potentially be ex-

ploitable by an adversary, DCA algorithms that consider this

information are not explored in this paper and are left as

subject for future work.

GooPIR aims to offer what Domingo-Ferrer et al. call

h(k)-private information retrieval (h(k)-PIR). This prop-

erty ensures that a real query R is seen by the adver-

sary as a random variable R whose entropy is such that

H(R) ≥ h(k) for some function h. GooPIR describes a

protocol to construct dummy queries such that they are

perfectly indistinguishable from the real queries (i.e., such

that H(R) = log(k)). When perfect indistinguishability is

achieved, each of the k queries Q is classified as dummy

with probability Pr[QD|Q] = k−1
k , and as real with proba-

bility Pr[QR|Q] = 1
k .

GooPIR seeks a compromise between computational ef-

ficiency and privacy. Domingo-Ferrer et al. argue that the

higher k, the more dummy queries are sent to the search

engine, and the more privacy the system offers. In terms

of our query-based privacy properties, achieving log(k)-
PIR corresponds to maximum query unobservability and

deniability (U = D = Pr[D] = k−1
k ), which tend to one

as k increases.

Domingo-Ferrer et al. point out that the adversary may be

able to use a DCA that exploits the “popularity” of queries

(as explained for TMN) to identify and remove dummies.

To counter this attack GooPIR checks the popularity of

the keywords in the real query, and selects keywords for

3http://unescoprivacychair.urv.cat/goopir.php

Figure 4. SCA attack on GooPIR

the k − 1 dummy queries that have a similar level of

popularity. GooPIR assumes that the “popularity” of a query

is proportional to its frequency of appearance in the Web,

and that a public dictionary labeled with such frequencies is

available.

Further, to prevent disclosure attacks [1], [7] a query R
is always accompanied by the same set of k − 1 queries

D. By accompanying real queries always with the same

set of dummy queries, GooPIR prevents real queries from

appearing more frequently than dummies.

Domingo-Ferrer et al. provide in [9] a query-based anal-

ysis of GooPIR in which they evaluate the distinguishability

of real and dummy queries, and conclude that their strategy

indeed provides h(k)-PIR. Their analysis, however, consid-

ers a single set of k queries, and does not take into account

that the adversary may combine multiple sets of queries and

use a SCA to find correlations in the topics associated with

the queries.

To illustrate this, let us consider that k = 3 and

that Alice has consecutively issued the three sets of

queries shown in Fig. 4: {“ribbon”, “vacancy”, “tiger”},
{“lion”, “shower”, “stock”}, {“leopard”, “airport”, “song”}.
A SCA may reveal that big cats appear more often than oth-

ers (see Fig. 4, dark circle), and thus that it is more likely that

the user issued the queries {“tiger”, ‘lion”, “leopard”} than

any other combination. This implies that GooPIR does not

provide the promised perfect query indistinguishability [9]

when various sets of queries are taken into account, and

consequently, the unobservability and deniability provided

to queries also falls below k−1
k .

C. Plausibly Deniable Search.

Murugesan and Clifton propose “Plausibly Deniable

Search” (PDS) [22], [23], a dummy generation strategy that

aims at providing a user with “plausible deniability” with

respect to her queries. Analogously to GooPIR, each real

query is accompanied by k − 1 dummy queries, and thus
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query timing and metadata cannot be used to distinguish

dummy queries. Further, PDS substitutes user queries by

canonical queries [22], [23] to prevent the identifiability of

real queries based, e.g., on grammar or typos. Canonical

queries are formed by generic terms that can be combined

to represent any topic that could be searched by the users.

Let S denote the set of k queries S = {Q1, . . . , Qk}, of

which one query is real and k − 1 are dummies. The DGS

for choosing the k−1 dummy queries follows three rules: (i)

any real query Qi = R must generate the set S with equal

probability (i.e., the set S does not leak information about

the real query R that generated it); (ii) all Qi in S relate

to different topics (i.e., the set S is diverse with respect

to semantic categories); and (iii) all Qi in S are equally

plausible (i.e., no query in S can be filtered out because it

is more likely to have been generated by the OB-PWS tool

than by a user).

Murugesan and Clifton argue that query sets S constructed

following the aforementioned rules provide privacy, as they

enable the user to deny having issued Qi = R and to claim

instead that Qi = D and that her query was a different

Qj = R. The reasoning is that this is plausible because any

of the k queries is equally likely of having been generated

by the user, and they would all result in the same observed

set S. Assuming that the three rules are satisfied and that

there is no DCA that could identify some queries as being

more likely real than others, PDS’s definition of “plausible

deniability” is equivalent to D (as defined in Sect. III-B)

when maximum deniability and unobservability are achieved

(D = U = Pr[D] = k−1
k ).

To ensure topic diversity, the dummy generation strategy

of PDS relies on a SCAPDS called “Query-Topic Score”

(denoted as rscore). For each query Q, rscore computes

a vector with as many components as semantic categories

are considered by the SCAPDS. The value of each compo-

nent of the vector is a score that expresses the extent to

which Q relates to category i. PDS assumes that a suitable

rscore algorithm is available, and makes abstraction of its

specific implementation. PDS uses the rscore vectors to

select dummy queries that relate to semantically distant

categories, according to a topic dissimilarity metric (e.g.

cosine similarity).

The experimental evaluation of PDS presented in [22]

shows that it generates query sets S that relate to diverse

topics. Murugesan and Clifton argue that “the existence of k
diverse query mappings to the same query set S is sufficient”

for obfuscating the user profile X . Their evaluation however

falls short of analyzing to what extent a strategic adversary

(that considers sequences of queries and background infor-

mation) would be uncertain with respect to the topics of

interest for the user.

To ensure that all queries in S are equally plausible, PDS

requires that all k queries Qi ∈ S have a similar level of

“specificity” with respect to their “dominating topic”; i.e.,

the maximum value in their respective rscore vectors should

be comparable. Note that this assumes that “specificity” of

queries is the only feature that can be exploited by the

DCA to distinguish dummy queries, and disregards other

characteristics such as the frequency of appearance of key-

words in the Web (which is considered by GooPIR [9]). PDS

does however not provide evidence proving that “specificity”

is indeed the only (or even most relevant) feature to be

considered when analyzing the robustness of its DGS to

DCAs.

Given a concrete SCAPDS and a function rscore, PDS

ensures that two queries R1 and R2 that are semantically

close generate sets of dummy queries that are also semanti-

cally dependent. This aims at preventing attacks, as the one

described in the previous section for GooPIR, that exploit

correlations in the semantics of the queries in a sequence to

identify the real queries. Note however that this implicitly

assumes that the adversary will use SCAPDS in her analysis.

If the adversary uses a different SCAAdv, the semantic

correlation of dummy queries may be weakened compared

to that of the real queries, enabling the distinguishability of

real queries.

To illustrate this, let us consider a PDS system with

k = 2 (i.e., each real query is accompanied by one dummy

query). Consider for instance a user that issues the queries

{“Justin Bieber”, “Toy Story”, “Disneyland”}, and that ac-

cording to SCAPDS the dominant topics of these queries are

“music”, “cartoons”, and “amusement parks”, respectively.

Further, consider that these categories are always masked

by dummy queries about “history”, “physics”, and “cars”,

respectively, also according to SCAPDS. Now consider that

the adversary implements a different SCAAdv that classifies

all three queries “Justin Bieber”, “Toy Story”, and “Disney-

land” as being related to “kids”, rather than being associated

to “music”, “cartoons”, and “amusement parks”. Given this

SCAAdv, it would be apparent to the adversary that topics

related to kids appear more often than others, and hence that

kid-related queries are likely to be the user’s real sequence

of queries.

D. PRAW - A PRivAcy model for the Web.

PRAW is an OB-PWS tool which has been proposed,

analyzed, and improved in several articles [11], [12], [13],

[14], [20], [28]. PRAW generates dummy web transactions

to conceal the profile of interests of a user. This profile X
(called “Internal User Profile” in PRAW) is computed using

a SCAPRAW called “Browser Monitor”. The SCAPRAW maps

transactions (queries or visited web pages) to a vector that

indicates the “weight” of the transaction with respect to each

of the considered semantic categories. These vectors are then

used to: (1) construct a user profile X that represents her

overall interest in the different semantic categories or topics;

(2) assess the level of protection that PRAW is providing to

X; and (3) feed and trigger the DGS.
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PRAW generates (on average) Tr dummy queries for each

user real query. The DGS of PRAW constructs dummy

queries with “a mix of terms, originating in the IUP [“In-
ternal User Profile”], along with random terms originating
from an internal database of terms that is a glossary of terms
related to the general domain of the user’s interests” [14]

(where IUP corresponds to X). The goal of this strategy

is to generate dummy queries that relate to topics that are

not too different from those of the user, and thus prevent

the adversary from deploying clustering attacks [14] that

distinguish real and dummy queries based on their topic.

The authors of PRAW acknowledge that such a strategy may

reveal users’ broader interests, but argue that it is necessary

to generate plausible dummy queries and that preventing

the adversary from inferring specific topics of interest offers

sufficient privacy protection. For instance, the adversary may

discover that a user is interested in computer security, but

cannot learn whether her specific interest is cryptography or

intrusion detection systems.

PRAW measures profile privacy as the distance between

the real and the observed profiles (S(X,Y )), computed as

the cosine similarity between the vectors X and Y [11],

[12], [13], [14], [20], [28]. PRAW considers that the closer

S(X,Y ) is to zero, the less information Y leaks about

X . Accordingly, the DGS of PRAW (called “Transaction

Generator”) attempts to generate dummies that decrease the

similarity S(X,Y ).
PRAW has been evaluated against the aforementioned

clustering attack [14]. The evaluation found that dummy

queries are hard to filter based on their topic, and that the

attack results in S(X,Y ) that are reasonably low – thus

concluding that PRAW provides an adequate level of privacy

protection to user profiles X .

The privacy metric used in PRAW implicitly assumes

that the cosine similarity between real and observed profiles

S(X,Y ) is indicative of the uncertainty of the adversary on

X . We note that the results reported in [11] indicate that

PRAW’s strategy works in such a way that the similarity

S(X,Y ) is a function of the dummy generation rate Tr (e.g.,

generating 10 dummies per real query results in similarities

around 0.7), which can be inferred from the total number of

queries generated [24]. We argue that this is not the case,

and that a DGS that results in a predictable S(X,Y ) can

actually be exploited by a PFA to significantly reduce the

uncertainty of the adversary on X .

Let us illustrate with a simple example how a PFA can

exploit the predictability in PRAW’s strategy with respect to

the distance between X and Y .

We first consider an adversary who does not have any

prior information on the distribution of user profiles X
(i.e., all possible profiles X ∈ X are equally likely, and

the a priori uncertainty is H(X ) = log(|X |)). Figure 5

shows the space X of possible profiles X when considering

three categories (vectors X = {x1, x2, x3} are such that

Figure 5. Pr[X|Y, d̂] assuming that Pr[X = X] is uniform (or not
available).

Figure 6. Pr[X|Y, d̂] and Pr[X′|Y, d̂′] assuming that Pr[X = X] is as
depicted in Fig. 2 and available to the adversary.

∑
i xi = 1). Consider that the adversary observes profile Y ,

which in the figure corresponds to the point marked as •.
We denote as d̂ the estimated expected value of 1−S(X,Y )
given Tr. Given PRAW’s strategy, the real profile X that

resulted in observation Y lies with high probability in the

curve defined by points at distance d̂ from Y . In Fig. 5,

higher probability densities Pr[X|Y, d̂] are depicted in a

darker shade. The width of the curve is given by the

confidence interval of d̂. PRAW’s strategy leaks that profiles

lying in these dark areas are the most likely candidates for

being the real profile X of the user – thus significantly

reducing the adversary’s uncertainty with respect to X (i.e.,

EZ << H(X )).

This information leakage is aggravated if the adversary

has prior information on which are the likely user profiles

X . Let us consider that the prior probability distribution of

X , Pr[X = X], is for instance as shown in Fig. 2. Bayes’

theorem can be used to compute the posterior probability

Pr[X|Y , d̂]. This would help the adversary to further narrow

down the set of highly likely profiles to those X that are

both reasonably common in the population and that lie at

a distance d ≈ d̂ from the observed profile Y . We show in

Fig. 6 an example of combining an observation Y with the

background information on X , given two possible estimated
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distances d̂ and d̂′.
PRAW considers that privacy is proportional to distance

(inversely proportional to similarity), and thus that if d̂′ < d̂
(conversely Ŝ′ > Ŝ), then the DGS resulting in d̂ provides

better privacy than the DGS′ resulting in d̂′. We note that

in the scenario depicted in Fig. 6, considering background

information may result in d̂′ corresponding to a higher

level of uncertainty on X (larger dark surface) than d̂; i.e.,

E ′Z may be higher than EZ even though d̂′ < d̂. This

illustrates that distance is not necessarily proportional to

privacy, and that using distance-based metrics can result in

a misleading privacy evaluation. Furthermore, crafting the

DGS to maximize a particular geometric distance metric can

be exploited by the adversary, who can invert the noise added

by the OB-PWS tool to reduce her uncertainty on the user

profile.

E. Optimized Query Forgery for Private Information Re-
trieval (OQF-PIR)

Rebollo-Monedero and Forné proposed OQF-PIR [25],

an OB-PWS system that aims at optimizing the protection

provided to user profiles X when a limited budget of dummy

queries is available. OQF-PIR assumes that the population
profile Y T , a profile describing the aggregate interests of the

whole set of users, is known.

Rebollo-Monedero and Forné claim that “whenever the
user’s distribution [profile] differs from the population’s, a
privacy attacker will have actually gained some information
about the user, in contrast to the statistics of the general
population”. They propose to measure profile privacy as the

Kullback-Leibler (KL) divergence [6] dKL(Y ||Y T ) between

the observed profile Y and the population profile Y T .

They interpret dKL(Y ||Y T ) as a measure of dissimilarity

between the observed and population profiles, and consider

that privacy is perfectly protected when dKL(Y ||Y T ) = 0.

Additionally, the adversary is assumed to not be aware of the

OQF-PIR tool, and thus to take for granted that Y represents

the real profile of the user.

We note that, according to this metric, a user Alice whose

profile coincides with the average of the population (i.e.,

X = Y T ) would enjoy perfect privacy protection without

the need for any obfuscation tool, implying that privacy

protection is only needed for users who “deviate” from the

average. The adversary would however be able to perfectly

reconstruct Alice’s profile X . We argue that profile privacy

protection relates to the uncertainty of a strategic adversary

on the real user profile X , and not to how “average” or

“outlier” a user appears to be with respect to the rest of the

population (i.e., being revealed as “average” may also lead

to a privacy breach).

The DGS of OQF-PIR is designed to optimally minimize

dKL(Y ||Y T ). OQF-PIR implicitly assumes that a SCAOQF

is available to the DGS that identifies query topics and con-

structs profiles (vectors) representing the interest of the user

in each of the topics (modeled as a multinomial distribution).

In order to find the optimal dummy generation strategy

OQF-PIR models the observed profile Y as a weighted

function of the real profile X and a dummy profile W :

Y = (1− ρ)X + ρW , (1)

The dummy profile W is a multinomial distribution in

which each element wi represents the fraction of dummy

queries in category i to be generated by the DGS. The

weighting factor ρ (called redundancy) is the ratio of dummy

to total (real and dummy) queries, and represents the limited

budget of dummy queries available. For a given real profile

X and rate ρ, the optimal dummy profile W is the one that

minimizes dKL(Y ||Y T ).
The optimization algorithm works by first ordering the

profile categories in such a way that

x1

yT1
≤ · · · ≤ xi

yTi
≤ · · · ≤ xn

yTn
, (2)

and then assigning values to their corresponding wi in a

water-filling fashion. That is, dummies are added starting

by the first categories until the budget of dummies is

exhausted [15]. Let us consider for simplicity that Y T is

the uniform distribution. Assuming that ρ is such that only

the first j out of n categories can be completely filled, the

resulting observed profile Y = {y1, · · · , yn} satisfies that

y1 = · · · = yj < yj+1 ≤ · · · ≤ yn. Note that, as no

dummies are added to the last components, wi = 0 and

yi = (1− ρ)xi for i > j + 1.

OQF-PIR assumes a non-strategic adversary who does

not attempt to attack the dummy generation strategy. We

now evaluate DCAs that identify (some of the) real queries,

and PFAs that significantly reduce the uncertainty of the

adversary on X .

Let us consider an observed profile Y such that its l last

components yi have bigger values than their corresponding

yTi (i.e., yTi < yi, for n − l < i ≤ n), and let C
denote the set of categories C = {i}n−l<i≤n. The water-

filling DGS implemented by OQF-PIR does not generate

any queries on those l categories —as they would take

Y farther from, rather than closer to, the target profile

Y T . From a query analysis perspective, the adversary can

implement a DCA that exploits this feature, and identifies as

QR queries QC that are associated with categories included

in set C according to SCAOQF. Thus, these queries enjoy no

unobservability or deniability, as Pr[QD|Q = QC ] ≈ 0 and

Pr[D|QR = QC ] ≈ 0.

OQF-PIR assumes that the dummy rate ρ is a secret

parameter. We note however that a rate ρ̂ could be estimated

from the overall number of queries and default configuration

parameters. Let us assume that the adversary is able to

estimate a probability distribution of ρ̂. We consider a three-

dimensional profile space formed by categories (a, b, c), as
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Figure 7. Possible real profiles (as a function of ρ), target profile, observed
profile, and implausible real profiles, in the profile space

Figure 8. Probability of ρ over a region of the profile space.

shown in Fig. 7, and a population profile that lies at the

center of the space; i.e., at point Y T = ( 13 ,
1
3 ,

1
3 ).

Given the water-filling algorithm used by the DGS, noise

is added to profiles in a deterministic way. Consider that

the observed profile is Y ′, represented as a square dot in

Fig. 7. The components of Y ′ are such that y′b < y′c < y′a.

The gap between the two smallest components (y′b and y′c)

indicates that ρ is not sufficient to fill the smallest component

(y′b). The DGS must have generated dummies with a vector

W ′ = (w′a, w
′
b, w

′
c) = (0, 1, 0), and thus the real profile X ′

can be estimated as:

X̂ ′ = (
y′a

1− ρ̂
,
y′b − ρ̂

1− ρ̂
,

y′c
1− ρ̂

) .

Note that as ρ̂ → ρ, X̂ ′ → X ′ and EZ′ → 0, meaning

that X ′ can be determined when the dummy rate ρ can be

estimated accurately.

We depict in Fig. 7 as a dark (vertical) short line the

likely profiles X ′ that the OQF-PIR strategy might have

transformed into the observed Y ′. As we can see, the

diversity of likely X ′ is rather limited, even when the

estimation of ρ has low confidence (i.e., probability density

of ρ with high variance).

The point marked as • in Fig. 7 corresponds to another

possible observation Y = (ya, yb, yc) such that ya = yb <
yc. In this case, it is clear that the DGS is generating enough

dummies to fill the weakest category (either a or b), but not

enough to bring Y to Y T . W = (wa, wb, 0), with wa+wb =
1; and x̂c = yc

1−ρ̂ . The space of likely real profiles X̂ is

depicted as a dark diagonal line in the upper right corner of

Fig. 7. While this scenario leaves some room for uncertainty,

we can see that the set of likely real profiles X is still rather

limited.

Finally, we show in Fig. 8 a scenario in which the dummy

rate ρ is sufficient for achieving Y = Y T . We show as a dark

inner triangle the space of likely profiles X̂ that may have

originated Y = Y T given ρ̂. As we can see, even in this case

OQF-PIR does not provide a high level of profile protection.

Finally, we note that by using background information the

adversary may be able to further reduce her uncertainty on

X .

F. Noise Injection for Search Privacy Protection.

Lastly, we consider the Noise Injection for Search Privacy

Protection (NISPP) strategy proposed by Ye et al. [30].

Similarly to Rebollo-Monedero and Forné [25], NISPP aims

at finding the optimal dummy queries distribution amongst

categories. The main difference with respect to [25] is

that Ye et al. consider the mutual information between

observed and real profiles I(Y;X ) as optimization criteria.

The optimal DGS is the one that brings I(Y;X ) closer

to zero, and when I(Y;X ) = 0, the observed profile Y
does not leak any information about the real profile X .

With respect to the profile privacy properties defined in

Sect. III-A, I(Y;X ) = 0 corresponds to EY = H(X ), as

I(Y;X ) = H(X )−H(X|Y), i.e., perfect privacy protection.

With respect to query privacy properties, NISPP assumes

that dummy and real queries are indistinguishable based on

their content and metadata (but provides no specifics on how

this could be implemented in the DGS). Further, it considers

that each possible query corresponds to a category of its

own, with the goal of making their system robust to any SCA

that could possibly be implemented by the adversary. Note

that considering individual queries as categories implies that

profile-based and query-based analysis are equivalent. Thus,

I(Y;X ) = 0 also corresponds to maximum deniability and

unobservability of queries (D = U = Pr[D]).
Ye et al. propose two DGS constructions, assuming that

the user real profile X is available. The first DGS con-

struction achieves I(Y;X ) = 0 assuming that at least

NQ − 1 dummy queries are generated per real query (i.e.,

Pr[D] ≥ NQ−1
NQ

), where NQ is the number of possible

queries. For each real query the DGS is allowed to generate

all other NQ − 1 possible queries, and thus the strategy

results in a uniform observed profile Y regardless of which
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is the real profile X . This approach is however impractical

in realistic settings where NQ is large.

The second DGS construction proposed by Ye et al.

considers that only one dummy query is generated per real

query; i.e., Pr[D] = 0, 5, and proposes a (deterministic)

algorithm that outputs the distribution of dummy queries

that minimizes I(Y;X ), given X . The experimental results

presented for I(Y;X ) however do not consider a strategic

adversary who takes background information into account.

A security evaluation of the proposed DGS would also

involve (1) testing its robustness to SCAs that identify topics

of interest and in turn feed this information to a DCA

that distinguishes queries; and (2) studying whether the

noise added by the DGS is predictable and invertible, such

that a filtered profile Z can be constructed whose mutual

information I(Z;X ) is larger than I(Y;X ) (or, in other

words, such that EZ < EY ), further diminishing its privacy

properties. Such comprehensive analysis of NISPP’s second

strategy is beyond the scope of this paper.

V. SUMMARY OF BASIC FEATURES IN OB-PWS

SYSTEMS ANALYSIS

In the previous section we have described and analyzed

a series of OB-PWS tools, and pointed out a variety of

flaws in both their designs and evaluations that lead to an

overestimation of the level of privacy that they offer. In this

section we revisit our analysis and classify the reviewed

OB-PWS systems according to their features, discussing the

impact of each feature on the properties of the schemes.

Table II summarizes the main features considered in our

evaluation. In this table ticks indicate that an OB-PWS

system possesses a feature, and crosses that it does not.

We write “�” when we have not evaluated the feature for

a given system and we write “n/a” when the feature cannot

be evaluated for a system due to a lack of specification in

the original paper.

A. Dummy generation strategies

The dummy generation strategies DGS of the studied

systems can be classified in two broad categories. On the

one hand we have systems that focus on the obfuscation of

the real profile as a whole, assuming that real and dummy

queries are indistinguishable based on content and metadata.

TMN [18], PRAW [28], OQF-PIR [25], and NISPP [30] fall

into this category.

On the other hand we identify systems that focus on

hindering the adversary’s ability to distinguish real and

dummy queries, assuming that query indistinguishability

implies protection at a profile level. In this category we have

TMN [18], GooPIR [9], PDS [23], and NISPP [30].

Note that we have classified TMN and NISPP in both cat-

egories. In TMN, the DGS is mostly focused on reducing the

distinguishability of real queries, but dummies are selected

in such a way that the profile observed by the adversary is

different from the user’s real profile. NISPP, as explained in

Sect. IV-F, considers that each individual query corresponds

to a category, and hence the query and profile properties are

equivalent for this strategy.

B. Privacy Definitions

A second point in which the studied systems diverge is in

the privacy property that they aim to achieve. Even though

all schemes share a common objective, namely to prevent the

adversary from learning the users’ search interests, there are

various ways in which they formalize this abstract privacy

goal.

GooPIR and PDS are query-oriented schemes whose goal

is to generate dummy queries that are hard to distinguish by

the adversary, thus ensuring that user queries are k-deniable.

In other words, these systems provide the user with an alibi

with respect to which queries they have issued, and which

queries have been issued by the OB-PWS tool.

GooPIR and PDS suggest that users can also claim that

the profile recovered by the adversary does not reflect their

interests, as it contains noise from dummy queries. However,

it is unclear how this query k-deniability property relates to

the amount of profile obfuscation provided by these systems

—i.e., to what extent k-deniability prevents the adversary

from inferring the topics of interest of a user.

Profile-oriented systems on the other hand tend to rely

on privacy definitions that relate to the (dis)similarity of

profiles. For TMN and PRAW privacy is related to the

similarity between the real profile of the user and the profile

available to the adversary. The more dissimilar these profiles

are, the better the privacy protection provided by the system.

OQF-PIR alternatively considers that privacy increases as the

observed profile is more similar to the average population

profile. Although PDS uses a query-based approach, its DGS

takes into account semantic distance and generates dummies

on topics that are as semantically distant as possible from

the topic of the real query —thus reducing the similarity

between the real and observed profiles.

These approaches implicitly assume that there is a direct

correlation between the privacy offered by the system and

the similarity between the observed and the real (or the

observed and the population) profiles. Nevertheless, we have

shown (see Sect. IV-D and Sect. IV-E) that distance-based

metrics do not necessarily reflect the privacy protection

provided to profiles, as they are not indicative of how much

the adversary knows about the real user profile.

Finally, NISPP uses mutual information as privacy metric,

and its DGS aims at obfuscating the real profile such that

the observed profile leaks no information about it. We

recall that this metric is equivalent to the equivocation EZ
(introduced in Sect. III-A), which measures the uncertainty

of the adversary on real profiles X given the filtered profile.

The average amount of profile information leaked by the

DGS can be computed as H(X )− EZ .

501



Table II
OB-PWS TOOLS: SUMMARY OF FEATURES.

TMN [18] GooPIR [9] PDS [23] PRAW [28] OQF-PIR [25] NISPP [30]

DGS
Profile oriented � � � � � �
Query oriented � � � � � �

Privacy
definitions

Privacy as (dis)similarity � � � � � �
Privacy as query k-deniability � � � � � �
Privacy as information leakage � � � � � �

Analysis

Aware adversary � � � � � �
Considers background information � � � � � �
Considered strategic adversary � � � � � �
Exploitable query content � � � � n/a n/a
Exploitable query metadata � � � n/a n/a n/a

Invertible DGS profile transformation � � � � � �

C. Analysis and evaluation

Systems also differ in their assumptions on the capabil-

ities and knowledge of the adversary. TMN and OQF-PIR

consider that the adversary is not aware of users having

installed an OB-PWS tool. This is reflected in the security

evaluation that accompanies the description of the designs,

which is non-existent in TMN and flawed in OQF-PIR, as

we have shown in Sect. IV-E.

The reviewed systems vary widely in their assumptions on

background knowledge. OQF-PIR assumes that the popula-

tion profile is available to both the DGS and the adversary.

GooPIR assumes that the frequency of appearance of search

keywords in the Web is available to the tool, and also

used by the adversary to attempt to distinguish between

real and dummy queries. TMN, PDS, and PRAW neglect

in their evaluation the fact that the adversary may have

access to background information on likely user profiles

—even although it has great impact on the security they

offer (as illustrated in Sect. IV-D). Lastly, NISPP’s analysis

(explicitly) does not take adversarial background informa-

tion into account (though acknowledging that background

information would diminish the level of privacy protection

offered), while considering that the profile of the user is

available to the DGS.

Of all the studied schemes, only GooPIR’s evaluation

considers a strategic adversary that tries to attack the im-

plemented DGS. Neglecting the adversary’s knowledge of

the dummy generation strategy results in an overestimation

of the privacy provided by the system. We demonstrate the

negative effects of such disregard on our analysis of PRAW

and OQF-PIR (Sect. IV-D and IV-E, respectively) where we

show how the adversary can invert the obfuscation algorithm

and gain information about the real profile.

Dummy query filtering is possible in TMN given the

keyword popularity, semantics [2], or grammatical construc-

tion [5] of dummy queries. GooPIR protects individual

queries against attacks that exploit the popularity of the

keywords in the Web, but it is vulnerable to attacks that

consider sequences of queries and exploit their semantic

relationships. PDS attempts to prevent these attacks by

canonizing queries, and generating sequences of dummy

queries that are semantically related. The security of this

strategy however relies heavily on a semantic classification

algorithm SCAPDS , and does not necessarily guarantee that

a different SCA (with a different definition of “topics”)

will not distinguish dummy queries based on semantic

correlations. PRAW aims at preventing query content attacks

by selecting the keywords for its dummy queries on the

“general” topics of interest for the user (but on different

“specific” topics). PRAW’s strategy for generating queries

is however not sufficiently specified to allow for a thorough

evaluation. OQF-PIR and NISPP are not concerned with

individual queries and do not provide any specifics on how

to generate dummy query content.

TMN specifies several strategies for generating dummy

query metadata (headers, cookies). These strategies can

however be exploited by an adversary to distinguish dummy

and real queries. GooPIR and PDS send queries in batches

of k (one real and k − 1 dummy) such that query timing

or metadata cannot be exploited for distinguishing queries.

PRAW, OQF-PIR, and NISPP do not specify any strategies

for generating query metadata.

PRAW and OQF-PIR present strategies to obfuscate the

user profile using a specific profile transformation function:

maximizing cosine similarity with the observed profile, and

making the observed profile as similar as possible to the

average population profile, respectively. We show how these

strategies allow the adversary to predict and (partially)

reverse the transformation. NISPP’s first (impractical) con-

struction consists in making the profile appear as uniform

by generating NQ−1 dummy queries for each query issued

by the user, where NQ is the number of possible queries.

The second (practical) construction would require additional

analysis, as mentioned in Sect. IV-F. Similarly, analyzing

the effectiveness of profile filtering algorithms for TMN,

GooPIR, and PDS, would require studying how these tools

introduce noise in the observed profiles under different

SCAs. If the distortion introduced is predictable (i.e., if there

is a consistent pattern in how noise is added to profiles), the
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adversary may be able to implement PFAs that filter out

(part of) the noise introduced by the dummy queries in the

observed profile.

Finally, we would like to highlight that none of the

security evaluations presented with the reviewed systems

was done from both a query-based and a profile-based

perspectives —thus overlooking potential vulnerabilities. As

we have pointed out in our analysis framework, performing

both a query-based and a profile-based analysis is crucial for

a comprehensive evaluation of the privacy properties offered

by a OB-PWS design.

VI. CHALLENGES AND OPEN PROBLEMS

We have stated that an effective DGS should ensure that

real and dummy queries are indistinguishable. Several of the

studied systems [9], [18], [28] propose to use a predefined

lexicon. We have shown that this feature can be exploited

by a DCA to distinguish real queries formed by keywords

that are not part of the lexicon. An approach that constructs

the lexicon in a way that it is difficult for the the adversary

to predict which keywords are included in it could mitigate

this problem. Another possible countermeasure is to map

query keywords to the words in the predefined lexicon, as

the canonical queries proposed in [23]. This strategy indeed

counters the aforementioned attack, but its viability in a

practical scenario is dubious. Canonical queries reduce the

utility of the search results as they cannot be as specific as

the original queries. This effect is even more serious when

queries refer to keywords difficult to canonize, e.g., proper

nouns.

The evaluation of a DGS should consider the prior prob-

ability of a given query and also its posterior probability

given the sequence of preceding queries. The DGS should

mimic users’ behavior in terms of query timing, meta-

data, semantics, and grammar, amongst other exploitable

features [2], [5], [24]. Furthermore, related visible actions

such as links that have been clicked after the search results

have been returned to the user should also be taken into

account. Designing a DGS that outputs plausible dummies

indistinguishable from real queries and mimics other relevant

aspects of user behavior is far from trivial and still one of

the main challenges of OB-PWS.

Several of the analyzed systems [23], [25], [28] base

their dummy generation strategy on a given SCADGS, and

evaluate the privacy protection they offer assuming that the

adversary uses the same semantic classification algorithm.

This does not consider attacks in which the adversary uses a

semantic classification different from SCADGS for recovering

the profile. The design of DGS strategies that are safe against

such attacks is a hard problem, as it is very difficult to predict

what SCA the adversary will use. We note that this problem

was already acknowledged in [30] by Ye et al. who alert of

the negative consequences that the attack could have on the

privacy protection provided by their tool.

In this paper we have considered that the output of a

DCA is a binary classification of queries; either as real or

dummies. An alternative approach would be to consider a

probabilistic DCA that assigns to each query probability of

being real (or dummy). These probabilities can then be used

to assign weights to categories when reconstructing the user

profile.
We have analyzed systems from a query-based and a

profile-based perspectives. We have found that query-based

privacy, usually formalized as query k-deniability, is well

understood. On the other hand we have found that profile-

based properties seem to be much harder to articulate. We

have indicated that distance-based metrics fail to capture

privacy notions, and that designing the DGS to maximize

(or minimize) a distance metric is a fundamentally flawed

approach, as it enables the adversary to predict (and remove)

the noise introduced in the observed profile.
We have proposed to use information theoretic metrics

(similar to those introduced by Ye et al. [30]) to model

the information leaked by the different dummy generation

strategies. Nevertheless, we acknowledge that the use of

such metrics on deployed systems entails some challenges.

First, the probability distribution associated to the random

variable X may not be available to the system designer, who

may only have access to an approximation (e.g., profiles

constructed from observed queries over a limited period of

time). A more suitable metric should consider the effect

of considering this approximation on the measured privacy

level. Secondly, as mentioned in Sect. III-A, the conditional

entropy is an average measurement of the privacy protection

provided by an OB-PWS tool. This should be taken into

account when evaluating the system, so as to guarantee a

minimum level of privacy protection to all users. Comple-

mentary metrics should be considered to provide a measure

of the worst-case profile protection provided by a DGS, for

instance the conditional min-entropy:

H∞(X|Z) = − log( max
X∈X ,Z∈Z

{Pr[X = X|Z = Z]}) .
Perfect privacy protection from an information-theoretic

perspective may be impractical to achieve in reality. Further,

it is unclear that complete concealment of the profile is a re-

quirement for all users and applications. Therefore it may be

desirable to define metrics that measure information leakage

with respect to less demanding privacy requirements, such as

altering the observed level of interest in specific categories.

An interesting approach would be to let users indicate the

type of profile they would like to present to the search engine

and generate the dummy queries accordingly. Profile privacy

metrics in this case should express the extent to which the

adversary is able to detect and reverse the noise introduced

in the profile categories whose weight has been modified.
We have highlighted the importance of carrying out both

profile-based and query-based analyses when evaluating a
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DGS. Nevertheless it should be taken into account that

depending on the application the privacy goal of the system

may be more focused on profile-based or query based

properties. A system may for instance focus on preventing

the disclosure of the search interests of the user but not

be necessarily concerned about specific queries. Conversely,

the goal of the system may be to prevent the adversary

from learning whether or not specific queries are real but

not necessarily concerned about the general interests of the

user. As an example, an HIV-positive user may be interested

in concealing that her HIV-related queries are real, or that

she is interested in health-related topics in general. The

former refers to concealing specific queries, thus requires a

query-based approach; whereas the latter refers to concealing

general interests thus it seems more appropriate to choose a

profile-based approach. Regardless of the approach chosen

in the design of the system we must stress that the analysis

of the scheme must take into account strategic adversaries

that know the dummy generation strategy and try to defeat it

from both a profile and a query perspective, as vulnerabilities

detected by an profile-based analysis may influence the

query-based privacy properties, and vice versa.

Our analyses reveal that a strategic adversary can exploit

certain types of dependencies of the dummy generation strat-

egy on the user profile or on real queries. Nevertheless, our

results do not allow us to extract conclusions about which

types of dependencies result in the better or worse privacy

protection. The optimal design decisions with respect to such

dependencies in order to obtain an effective and robust OB-

PWS tool remains as an open question.

Some of the systems we have studied implicitly assume

that the adversary is unaware of the use of the OB-PWS

tool [18], [25]. In other words, they assume that the tool

is unobservable for the adversary and hence she shall not

try to invert the effect of the dummy generation strategy.

While such a property may be desirable we argue that

achieving unobservability is non-trivial and cannot be taken

as granted without a proper analysis. Techniques to construct

and analyze unobservable OB-PWS tools are left as an open

problem.

A related problem is whether the dummy queries should

contain controversial keywords, e.g., “bomb”, “HIV”, or

“gay marriage”. If the tool is unobservable and such key-

words are included, users may appear as involved in subver-

sive activities, having a particular disease, or having certain

sexual orientation, which may be undesirable in certain

situations. The opposite strategy (avoiding such keywords

in dummy queries) puts users in a delicate position: either

they expose themselves; or they refrain from issuing queries

related to sensitive topics, effectively acting as a censors

on their own queries [17]. We note that this self-censorship

conflicts directly with the purpose of private web search, that

is to allow users to freely search for information without

revealing their preferences.

The above problems are alleviated when the tool is

observable and dummy queries can contain controversial

keywords. In this case the user can plausibly claim that

queries containing these keywords were originated by the

OB-PWS tool On the other hand, if sensitive terms are not

included in the OB-PWS lexicon the user is again subject to

self-censorship, reducing the utility of the system. Finding

the optimal balance between these properties is extremely

challenging as the decision not only depends on technical

possibilities but also on subjective opinions particular to each

individual.

VII. CONCLUSION

In this paper we have reviewed the state of the art in

obfuscation-based private web search (OB-PWS) techniques.

Our study contributes towards systematizing existing knowl-

edge by improving the understanding of the conceptual

building blocks of OB-PWS systems; defining and formal-

izing relevant privacy properties; and outlining the elements

that must be taken into account in their security evaluation.

We have proposed an abstract model that captures the

key elements and processes in OB-PWS systems, and an

analysis framework that considers privacy properties asso-

ciated to both search profiles and individual queries. Using

this framework we have analyzed six proposed OB-PWS

strategies and found vulnerabilities that had not been taken

into account in their original security evaluations —implying

that the level of privacy offered by these systems was being

overestimated.

Further, we have identified a series of features that should

be considered in a systematic security evaluation of OB-

PWS systems. In particular, we argue that OB-PWS pro-

posals should be analyzed with respect to both profile-based

and query-based privacy properties regardless of the design

principles and privacy goals of the scheme. It is our hope

that our results will serve as guidance for the designers of

future robust and effective OB-PWS tools.
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