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Abstract—In this paper we present a comprehensive timing-
based attestation system suitable for typical enterprise use, and
evidence of that system’s performance. This system, similar to
Pioneer [20] but built with relaxed assumptions, successfully
detects attacks on code integrity over 10 links of an enterprise
network, despite an average of just 1.7% time overhead for
the attacker. We also present the first implementation and
evaluation of a Trusted Platform Module (TPM) hardware
timing-based attestation protocol. We describe the design and
results of a set of experiments showing the effectiveness of our
timing-based system, thereby providing further evidence of the
practicality of timing-based attestation in real-world settings.
While system measurement itself is a worthwhile goal, and
timing-based attestation systems can provide measurements
that are equally as trustworthy as hardware-based attestation
systems, we feel that Time Of Check, Time Of Use (TOCTOU)
attacks have not received appropriate attention in the liter-
ature. To address this topic, we present the three conditions
required to execute such an attack, and how past attacks and
defenses relate to these conditions.

Keywords-remote attestation; software-based attestation;
timing-based attestation; trusted platform module; TOCTOU
attack

I. INTRODUCTION

While a plethora of commercial security products are
available today, the vast majority do not make use of existing
academic work in the area of remote attestation. Over-
whelmingly, security tools protect themselves with access
control mechanisms such as file permissions, sandboxes,
user-kernel separation, or OS-hypervisor separation. The
ineffectiveness of this approach can be seen in the decades-
long history of successful techniques for bypassing access
control mechanisms.

Mechanisms are needed that can ensure security software
continues to behave correctly even in the presence of an
equally-privileged attacker. Previous work on timing-based
attestation [20] [17] [16] attempted to address this need,
but failed to provide experimental data for typical enterprise
systems. In this paper, we present a comprehensive view
of a timing-based attestation system designed for typical
enterprise use and experimental evidence of its performance.

The system, implemented within our Checkmate tool
suite, offers a number of contributions to the state of
the art. First, we have produced a timing-based attesta-
tion implementation that functions within typical enterprise
environments. Second, we have shown its performance is
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similar to previous research [20] despite a number of relaxed
assumptions and additional checks: Our implementation
does not rely on open-source network drivers; it functions
in the presence of Address Space Layout Randomization
(ASLR)-like kernel module loading within Windows XP, and
real ASLR in Windows 7; it functions well even when the
timing messages are sent over 10 network links (6 switches,
3 routers); it includes an implementation of a self-check
timing measurement based on the TPM’s tickstamp counter.
This system is described in Section III.

While preparing this capability for deployment, we per-
formed numerous experiments on 31 homogenous enterprise
hosts to which we had temporary access; in Section IV
we discuss the experimental set-up and results. The data
show the effectiveness of timing-based attestation for code
integrity within an enterprise setting.

Throughout the paper, we discuss possible attacks on
timing-based attestation and how we addressed these attacks
within our system. We also discuss the often misunderstood
problem of Time Of Check, Time Of Use (TOCTOU)
attacks against code integrity in Section V and how remote
attestation systems must adapt their designs to defend against
them.

Based on our experimental data and our early deployment
experience, we believe that timing-based attestation systems
like Checkmate can provide strong code integrity guarantees
today, and strong control flow integrity guarantees with more
work.

II. RELATED WORK

This work was undertaken specifically to determine
whether timing-based attestation systems built for general
purpose PCs, like Pioneer [20] and PioneerNG [17], behaved
as described when adapted to a different environment. Pio-
neer runs on x86-64 Linux and is implemented by inserting
the attestation code into an open source network driver ker-
nel module. PioneerNG runs in System Management Mode
(SMM), is implemented as 16 bit x86 assembly, and attests
to a verifier via USB rather than via the network. In contrast
our code is implemented in 32 bit Windows XP making use
of the existing network driver abstraction layer. We did not
implement DMA protection as PioneerNG did because we
consider that to be one of many TOCTOU attacks requiring
more generic countermeasures, as described in Section V.
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Software designed to provide timing-based attestation has
also been applied to embedded systems beginning with
SWATT [21] and then expanding into areas such as verifying
peripherals [10] [9], wireless sensors [18] [23] [4] and
SCADA systems [22].

An interesting recent result which straddles the boundary
of general purpose PCs and embedded systems is Jakobsson
& Johansson’s work [7] which shows the practicality of
software-based attestation on mobile phones. However, we
believe that their core technique of memory printing, when
applied to the increased RAM on desktops, would lead to
computation times of tens of seconds. We do not consider it
acceptable to lock a user’s system for this amount of time,
and we strive to keep attestation runtime in the 100ms range,
so that it is not noticeable to users.

For attacks on timing-based attestation systems, Castelluc-
cia et al. [3] provide an example control flow based attack
against a software-based attestation system using return
oriented programming. They also outlined a compression
attack which is not applicable to this work, because they
admitted it is detectable by a change in timing. Wurster et
al. [27] & Shankar et al. [24] have also suggested a type of
attack which exhibits TOCTOU characteristics in the way
that it changes virtual to physical mappings for the duration
of measurement. Only during measurement the attacker
points a virtual memory address to clean physical memory,
and when not measured the virtual address points to attacker-
modified physical memory. Yan et al. [28] also recently
proposed an attack which exploits pipeline parallelism, and
suggested a countermeasure of introducing backwards data
dependency within checksum loops. This is an easy condi-
tion to achieve, and will be added to our implementation.
They also proposed a TOCTOU attack predicated on control
flow integrity violation. They use an idle CPU to change a
function pointer (such as the return address) just in time
after the self-check function has run, but before secondary
measured code has run.

III. SELF-CHECKING IMPLEMENTATION

Our attestation system is part of a project called Check-
mate, which performs both attestation and Windows kernel
integrity measurement. To distinguish the two components,
we will refer to the attestation system as CMA and the
measurement system as CMM. The primary purpose of this
paper is to focus on CMA, as CMM is described in a sep-
arate paper under submission. Our current implementation
does not deal with attackers residing in system management
mode or utilizing hardware support for virtualization. That
is ongoing research, but some existing work [17] already
indicates that virtualization-based malware will cause timing
anomalies that will be detected “for free” by timing-based
attestation.
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Figure 1. NDIS Architecture diagram from [12]

A. Networking

CMA is implemented as a kernel module for 32 bit Win-
dows XP/7 (with a 64 bit Windows 7 port underway). This
paper describes primarily the Windows XP implementation.
It is built as a Network Driver Interface Specification (NDIS)
version 5.1 Intermediate Driver (IM), sometimes called a
network filter driver. In Figure 1, “NDIS miniport” drivers
are the device-specific drivers written by NIC manufacturers.
The box labeled “Lan Protocols” are “NDIS protocol”
drivers implementing generic higher level drivers such as
tepip.sys (which implements TCP/IP) or npf.sys (which
implements WinPcap.) Normally a miniport driver talks to
a protocol driver through the NDIS abstraction layer. How-
ever, an NDIS intermediate driver exposes a protocol driver
interface to miniports, and a miniport interface to protocol
drivers. In this way it can receive incoming and outbound
network traffic while residing at the lowest possible layer
that is not hardware-specific. Showing that the system works
while not being NIC-specific like past work is an important
improvement to the system’s practicality.

B. Self-check assembly

Because of limited space, we can only give an abbreviated
background description and readers must have familiarity
with [20] [17]. As with past work in timing-based attestation,
our system is composed of two parts. A server/verifier that
requests attestations that are a function of a server-supplied
nonce, and a client that responds to requests by computing
a self-checksum and sending it back to the server. The
server/client use the existing Pioneer Protocol [20]. The
verifier must be capable of re-computing the checksum as it
believes the client would have. If a naive attacker modifies
any of the memory checked by CMA, this will cause the
checksum to be incorrect, and the verifier will know that
the system is untrustworthy. A sophisticated attacker can
alter the checksum computation to yield a correct checksum



even in the presence of modified CMA memory, however
the construction of the self-checksum function is designed
specifically so that a forged checksum takes more time
to compute than a genuine one. This is because the self-
checksum is composed of millions of reads over its own
code. If an attacker is forced to put in even one extra
instruction to create the forgery, this will lead to millions of
instructions of overhead to compute the forged checksum.
The client code and the number of loops are tuned so that the
verifier can detect over the network the delay in responding
to the attestation request.

Like past work our self-check function incorporates multi-
ple pieces of system state in order to attest to code integrity.

1) EIP_DST - The inclusion of the instruction pointer
helps to indicate that the memory being executed ex-
ists in the expected memory range. This is the address
of the start of the next block that will be pseudo-
randomly called to. This cannot be used alone because
an attacker could hardcode, rather than calculate, the
value. It is therefore included only because it is readily
available and costs only a single add or xor instruction.
EIP_SRC - This is like EIP_DST, but instead indicates
the location where the calling block resides. Unlike
EIP_DST, an attacker cannot precompute or hardcode
this value, since it will differ according to the pseudo-
random jump order.

DP - The data pointer helps to indicate that the
memory being read exists in the expected memory
range.

*DP - This is the 4 bytes of data read from memory by
dereferencing DP. It is included so that the checksum
is reading its own memory, so that the final checksum
will change if there are any code integrity attacks on
its own memory.

PRN - We include the pseudo-random number which
is derived from the nonce sent by the server in the
Pioneer Protocol, and updated in each block. We use
the same PRNG as Pioneer.

EFLAGS - Included so that any changes to flags
such as the trap flag, interrupt flag, or the various
conditional code flags, will have to be fixed by the
attacker.

DR?7 - We place the lower 16 bits of the nonce into the
upper 16 bits of the DR7 hardware debug breakpoint
control register. The lower 16 bits of DR7 are set to
0, which disables all hardware breakpoints. This is
read in each block to help ensure hardware breakpoints
are still disabled, or makes the attacker incur fixing
overhead in each block if he is still using hardware
breakpoints.

PARENT_RET & GRANDPARENT_RET - We
pseudo-randomly include either the return address
on the stack that would return to the parent, PAR-

2)

3)

4)

5)

0)

7

8)
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ENT_RET, or the return address that would return to
the grandparent, GRANDPARENT_RET. Whichever
value is selected is mixed with the PRN, so that the
attacker cannot hardcode the expected value.

The incorporation of the parent and grandparent saved re-
turn instructions is in part in response to the ROP TOCTOU
attack presented in [3]. But it is also in response to having
had an external group attempt to attack our self-check, and
having one person independently come up with a simpler
form of this attack. It is because this independent assess-
ment leveraged multiple TOCTOU attacks that we realized
the real-world importance of taking them into account in
designing measurement systems.

Table 1
HIGH LEVEL: SELF-CHECK FUNCTION

Prolog
Block Variant 0

Block Variant 1

Block Variant 2

Block Variant 3

Block Variant 4

Small Block Variant 0
Minichecksum Fragment 0
Small Block Variant 1
Minichecksum Fragment 1
Small Block Variant 2
Minichecksum Fragment 2
epilog

As shown in Table I our code has eight blocks variants.
The figure is not to scale, as the first five “large” blocks
have nine sub-blocks, and the last three “small” blocks
have seven sub-blocks. The two extra sub-blocks in the
large blocks were only added to the increase the block
size. This allowed the size of a small block plus the size
of a minichecksum fragment to equal the size of a large
block, for easier block start address calculation. The use
of a minichecksum is borrowed from PioneerNG. It allows
the primary checksum, as implemented by the blocks, to
read memory only in the memory range of the self-check
function itself, which includes the minichecksum fragments.
This inter-mixed construction optimizes cache behavior. The
minichecksum fragments together implement code that can
read from arbitrary memory ranges outside of the verification
function and incorporate data into the checksum. In this
way the blocks check the minichecksum, the minichecksum
checks the CMM Windows memory integrity measurement
code, and the CMM code checks elsewhere on the system
for evidence of compromise. An attacker wishing to hide
from the CMM code must modify the earlier stages of the
dynamic chain of trust, finally modifying the calculation
of the blocks, which leads to a time overhead in their



calculation.

Our checksum is treated as an array of six 4-byte values
and is stored on the stack below all local variables. Like
Pioneer, we store part of the checksum below esp so that
any interrupts that occur while computing the result will
destroy part of the checksum. The checksum is organized so
that checksum[0] is at [esp-8], a gap for storing temporary
values on the stack is located at [esp-4], and checksum[1]-[5]
are stored at [esp] through [esp+16] respectively. Although
we only use a 32 bit nonce/PRN, there is still value in
having the checksum be 192 bits. An attacker wanting to
precompute all possible responses to all possible nonces
would require 232 * 6 * 4 (96G) bytes of memory for this
table. While this could reasonably be stored on a single
server system, or across multiple client systems, it would not
fit on a single typical client system. Additionally, because
Windows loads our module at different addresses across
reboots, as described in Section III-C, the attacker would
have to recompute this table every time the system was
rebooted. Given that TOCTOU and proxy attacks are more
effective currently, as described in Sections IV-H and V, we
believe this is a reasonable design optimization for the time
being, as updating a larger PRN requires more instructions.

The overall structure of a block is shown in Table II, with
the details of one variant of each of the sub-blocks being
shown in Table III. Typically the only difference between
*VARO and *VARI versions of code is a reordering of add
and xor instructions in order to maintain the strongly ordered
checksum property. As described in Pioneer, this construct
of adds and xors is used to prevent parallelization of the self-
check function, because if the sequence is not computed in
the same order, e.g. (A+B) & (C+D) instead of ((A+B) & C)
+ D, then the result will be different with high probability. In
Tables II and III, “codeStart” is the address of the beginning
of the self-check function, “memRange” is the size of the
self-check function, and “addressTable” is a precomputed
table of the start addresses of each block. In Table III the
following long-lived register conventions are in place: eax
and edx are scratch registers, ebx holds the checksum loop
counter, edi holds DP, and esi holds the PRN. In the body
of the code, ecx is used to accumulate the mixing of values
before they are mixed with the overall checksum. And before
inter-block transfer, ecx is loaded with EIP_DST.

In Tables II and IIT the MIX_EIP sub-block starts by
accumulating the value (EIP_SRC + EIP_DST) into ecx.
Then in an UPDATE_PRN*! sub-block, the PRN is up-
dated so that each block has a fresh PRN, and ecx is
updated to hold (EIP_SRC + EIP_DST & PRN ). In a
READ_AND_UPDATE_DP#* sub-block DP and *DP are
accumulated so that ecx holds (EIP_SRC + EIP_DST &
PRN + DP @ *DP), and then DP is updated to a new pseudo-

A * at the end of a block name is meant to be interpreted like a regular
expression, meaning any variation of characters from that point.
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random location. After the READ UEE_STATE®* sub-block,
ecx holds (EIP_SRC + EIP_DST & PRN + DP ¢ *DP +
DR7 @ EFLAGS). In READ_RAND_RETURN_ADDRESS
ecx will be updated to add in either PARENT_RET & PRN
or GRANDPARENT_RET @ PRN depending on bit O of the
PRN. In CHECKSUM_UPDATE the accumulated value in
ecx is mixed with the 192 bit checksum stored on the stack.
Finally, in INTERBLOCK_TRANSFER the code exits if
the loop counter is zero, or pseudo-randomly picks the next
block to jump to based on the bottom 3 bits of PRN.

Table II
MID-LEVEL: BLOCK VARIANT 0

EXAMPLE_BLOCK(codeStart, memRange, addressTable)
MIX_EIP

UPDATE_PRN_VARO
READ_AND_UPDATE_DP_VARO(codeStart, memRange)
UPDATE_PRN_VARI1
READ_AND_UPDATE_DP_VARI1(codeStart, memRange)
READ_UEE_STATE_VARO
READ_RAND_RETURN_ADDRESS
CHECKSUM_UPDATE

INTERBLOCK_TRANSFER (addressTable)

C. Windows-specific design considerations

Because we did not implement our code as a standalone
addition to a network driver as the original Pioneer did,
our kernel module has some dependencies on external code.
Specifically we import functions from ndis.sys (the NDIS
abstraction interface driver, hereafter referred to as ndis),
ntkrnlpa.exe (the kernel utilizing Physical Address Exten-
sions, nt), and hal.dll (hal). Therefore we must consider
these three modules to be part of CMA’s dynamic root of
trust as shown in Figure 2. We achieve this by modifying
our minichecksum to run over arbitrary memory ranges,
unlike in PioneerNG. This is done with a switch statement
that feeds range information into the start and end registers
used by the minichecksum. The ability to run over multiple
independent memory ranges is useful for including portions
of these modules, while avoiding certain areas within them.
For instance, the System Service Descriptor Table (SSDT)
is a table of function pointers that are often modified by 3rd
party software (despite this being discouraged by Microsoft.)
This table is measured by the CMM code, and not called
directly or indirectly by CMA code. Therefore we do not
think it should be incorporated into the self-checksum, as
that needlessly complicates checksum appraisal. Instead we
separately read the portions of nt’s .text section before and
after the SSDT. Similarly there is a complication with hal
in that it has a region within its .text section where data is
changed from zeros for the binary on disk, to stack garbage
left over from code that transitions into the “Virtual 8086”



LOW LEVEL: SINGLE BLOCK WITH EXPANDED SUB-BLOCKS (VARIANT

Table III

BLOCKS REMOVED)

add ecx, [esp]

add esp, 4

MIX_EIP

EIP_SRC ([esp]) + EIP_DST (ecx)
ecx is then used as an accumulator
Reset stack after EIP_SRC push

mov eax, esi
mul eax
or eax, 5
add esi, eax
XOr ecx, esi

UPDATE_PRN_VARO

Create a copy of x before squaring
eax = X*x

eax = (x*x OR 5)

PRN = x + (x*x OR 5)

Mix PRN with the accumulator ecx

add ecx, edi

xor ecx, [edi]
mov eax, esi

xor edx, edx

div memRange
add edx, codeStart
mov edi, edx

READ_AND_UPDATE_DP_VARO
Mix DP with accumulator ecx

Mix *DP with accumulator ecx

Move PRN to eax

Clear edx

edx = PRN modulo memRange
edx=codeStart+(PRN mod memRange)
Update DP to new value

mov eax, dr7
add ecx, eax
Xor ecx, [esp]
add esp, 4

READ_UEE_STATE_VARO

Copy the DR7 register

Mix DR7 with accumulator ecx
Mix EFLAGS with accumulator ecx
Reset stack after EFLAGS push

test esi, esi
mov eax, [ebp+4]
JP(6)

mov edx, [ebp]
mov eax, [edx+4]
XOr eax, esi

add ecx, eax

READ_RAND_RETURN_ADDRESS
AND PRN with self and set flags
Move PARENT_RET to eax
Hardcoded bytes for if(PF) jump 6
PF is parity flag set by test esi, esi
The jump would land at the next xor
If not jumped over,

move the GRANDPARENT_RET to eax

Xor saved ret with PRN
Mix xored saved ret with accumulator

mov eax, ebx
and eax, 3

xor [esp+eax*4], ecx
bt [esp+0x10], 1

rer [esp-0x08], 1
rer [esp], 1

rer [esp+0x04], 1
rer [esp+0x08], 1
rer [esp+0x0C], 1
rer [esp+0x10], 1

CHECKSUM_UPDATE

Copy loop counter to eax

Use bottom 2 bits of loop counter
to specify which checksum memory
entry to directly update.

Xor checksum[eax+1], accumulator
(+1 because checksum[0] is below esp)
Set carry flag based on LSB

of checksum([5]

Rotate right with carry checksum([0]
Rotate right with carry checksum[1]
Rotate right with carry checksum([2]
Rotate right with carry checksum([3]
Rotate right with carry checksum([4]
Rotate right with carry checksum[5]

sub ebx, 1

test ebx, ebx

jz setRange

lea edx, addressTable

mov eax, esi
and eax, 7

mov ecx, [edx+eax*4]
call ecx

INTERBLOCK_TRANSFER
Decrement loop counter

Check if loop counter is 0

If 0, jump to minichecksum switch
Otherwise, prepare to jump

to next block. Load address of table
holding start address of each block
Copy PRN to eax

Use bottom 3 bits to decide which
block to call to next

Move EIP_DST to ecx

Call to next block

Implicitly push EIP_SRC
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ntkrnlpa.exe €—> hal.dll
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Checkmate <€—— ndis.sys

Figure 2. Checkmate kernel module dependencies

CPU mode.? This region can be skipped because the verifier
will not be able to reconstruct the expected values. There are
no such complications with reading the code from ndis.

The inclusion of the external modules means that in order
for the appraiser to reconstruct the self-checksum, it will
have to reconstruct the state of memory for these modules
too. This capability is also necessary for verification of the
CMM code’s measurement of binaries. To achieve this, the
appraiser must have a trusted copy of the file that was loaded
in memory on the client system. The file is then memory
mapped and processed in the same manner it would have
been by the OS loader, starting with applying relocations
based on the base address where the module was loaded.
Verification also requires reconstructing the import address
table (IAT), because in these modules the IAT is in the .text
section. This is why in Figure 2 we point out nt and hal’s
dependence on bootvid.dll and kdcom.dll. The appraiser
must also have trusted copies of those files in order to
accurately fill in the reconstructed IATs for nt and hal.

An important element of implementation on Windows
rather than Linux is that the appraiser cannot assume it
knows exactly where in memory the client is. This is because
on Windows XP SP3 the OS loader does not respect the
preferred base address listed in the binary header for kernel
modules. This is despite the fact that officially ASLR support
only begins in Windows Vista and later. By default for .sys
kernel module files, even if the preferred base address is not
already taken, the OS loader will not load it at that address.
Implementation in the presence of this behavior on Windows
XP led us to believe that our implementation would work
equally well in the presence of ASLR on newer Windows
systems, and a subsequent Windows 7 port confirmed this.
The inability of the verifier to know the address where the
CMA module will be located a priori necessitates that a
client send back its base address with attestations. However
this means that the attacker can forge the base address that
is returned. We take advantage of this fact for our reference
attacker in Section III-E.

2This hal self-modification is absent in Windows 7. But Windows 7 also
added 3 new modules which nt depends on. They were easily dealt with
through 3 new cases in the minichecksum switch statement.



Our module originally used Windows API calls in order
to make the other CPUs spinlock while our code ran with
exclusive access to a single CPU. What we ultimately
found is that this code was introducing up to 16ms in
non-deterministic delays in our observed network RTT. We
believe this is because the APIs used Windows Deferred
Procedure Calls (DPCs) to schedule the spinlocks on the
other CPUs. We believe that these functions are using
inter-processor interrupts (IPIs) underneath, and we could
reintroduce the locking behavior in the future by using
IPIs directly. However because any attacks that leveraged
the fact that we weren’t locking the other CPUs would
be TOCTOU attacks, we think it will be more beneficial
to utilize the multiple CPUs to implement a randomized
overlapping scheme as outlined in Section V-C.

D. Microarchitectural optimizations

Past work such as Pioneer has suggested the need to
optimize the self-check function with awareness of mi-
croarchitectural details in order to fully occupy all sub-
units of the processor. This attempts to ensure there are
no empty slots where additional attacker code does not
incur overhead. However, as past authors have made clear,
there is still no mechanism to prove the optimality of a
self-check implementation. Therefore, while we did make
attempts to optimize our self-check through guess-and-test
reconfiguration of code, we cannot guarantee the optimality
of our implementation, or our attack. However, in general
we do not think it is reasonable to expect security software
vendors to gain deep expertise in every microarchitecture
variant of x86 processors. We believe that as timing-based
attestation becomes more mature it is more beneficial to
work directly with chip manufacturers to provide a single
reference implementation per microarchitecture. We will be
making our self-check code widely available as a starting
reference implementation from which future improvements
and reference attacks can be built, hopefully in cooperation
with chip vendors and other researchers who have deep
systems knowledge.

E. Self-checksum forgery attack

It is important to remember that while timing-based at-
testation systems are useful to an enterprise, they are not in-
fallible. They can be thought of as providing robust tamper-
evidence, rather than tamper-proofing, for security software.
Our reference attack takes advantage of the requirement
on Windows for the client to send back the base address
where it says the Checkmate driver is loaded. For simplicity
of testing, we implemented our attack in an experimental
branch of the same kernel module where the normal CMA
code resides. This allowed us to toggle the attack on/off in
our experiments.

As setup for the attack, when the legitimate module
is loaded, the embedded attacker code reads the client
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binary from disk and copies it into dynamically allocated
kernel heap space as shown in Figure 3. The attacker code
processes the relocations of the clean client copy so that it
looks as it would if the OS had loaded it at the given base
address. When the attack is activated, it places an inline
jump instruction as the very first instruction called in the
self-check function. This jump redirects to the attacker code.
The attacker then sets the data pointer to the address in the
clean memory range. He does not have to incur performance
overhead fixing DP in every loop because he will ultimately
be lying about the base address when the response is sent.

The attacker cannot simply invoke the clean self-check
function with a corrupted data pointer in order to avoid
forging the EIP. This is because when the appraiser is
reconstructing the self-checksum, it will reconstruct both
the expected DP and EIP to be within the range where it
was told the module is based. If the attacker invoked the
clean self-check, with correct stack pointers, it would return
to invoke clean CMM code, un-modified to hide attacker
changes. Therefore the attacker must still run separate code
that forges the EIP components of the checksum to be within
the range where he is lying that the module is loaded.

Currently our attacker requires 14 instructions to the
defender’s 5 for computing EIP_SRC, EIP_DST, and tran-
sitioning between blocks, as shown by comparing Table IV
to the last sub-block of Table III. The first 3 instructions of
both sub-blocks are the same check for the exit condition.
The next 3 instructions are the attacker looking up the
original EIP_SRC from a table he computes in his prolog.
This EIP_SRC is pushed onto the stack as it would be by
the clean code’s “call ecx”. The next 8 instructions serve
a dual purpose. They calculate the EIP_DST that would
be put in ecx in the clean code, and they also update the
currentIndex variable which helps the attacker with lookup
of the next block to jump to. While the attack may not seem
optimal, we experimented with variants to try to decrease
the attacker overhead. For instance we tried forging the
EIP_DST by moving a precomputed immediate to ecx at
the beginning of each block. The performance remained
unchanged. We also tried replacing the attacker’s EIP_DST
forgery with a precomputed table as is done with EIP_SRC
forgery, instead of computing it with the multiply and add.
This actually increased attacker time overhead. We will be
making multiple reference attacks available with our public
reference implementation. These will include attacks that are
less efficient than the attack we have used, so that other
researchers can potentially improve their effectiveness in
ways we have not considered.

F. TPM tickstamp-based timing measurement

Schellekens et al. proposed to create a hybrid system
using the existing Pioneer Protocol, but using a TPM for
trustworthy timing of the self-check function [16]. On
the face of it, this is somewhat contradictory; the whole
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Table IV
ATTACKER INTER-BLOCK TRANSFER FORGES EIP_SRC AND EIP_DST

INTERBLOCK_TRANSFER_ATTACK
sub ebx, 1 Decrement loop counter
test ebx, ebx Check if loop counter is 0
jz attackSetRange If 0, jump to minichecksum switch
lea edx, origEipSrcArray Get address of array of

forged EIP_SRC addresses

Get index of current block

Push the EIP_SRC that the original

call instruction would have pushed

mov eax, currentIndex
push [edx+eax*4]

xor edx, edx Clear edx for use in upcoming mul
Move PRN to eax

Keep the bottom 3 bits of PRN in eax

Store this as the next index

mov eax, esi

and eax, 7

mov currentIndex, eax
where the code will be executing
Move size of block to dl

This will perform ax = al * dl

mov dl, BLOCK_SIZE
mul dl

mov ecx, cleanBlockZero Get address of start of clean blocks
Ecx = base + sizeofblock * (PRN & 7)
This sets ecx to the expected EIP_DST

Now the attacker prepares to jump

add ecx, eax

lea edx, attackEipDstArray
to his own next block

Get the index of the next block

Jump to the address of the next block

mov eax, currentIndex

jmp [edx+eax*4]

point of Pioneer originally was to propose a mechanism
to create a dynamic root of trust on “legacy systems” that
did not have a TPM. However we believe the system is
worth investigating given what experiments tell us about
the prohibitively expensive amount of time that a software-
only timing-based attestation system would need to run to
overcome network jitter on WANs. When we asked the
authors for their prototype implementation, we had found
they hadn’t actually implemented or tested it. Therefore we
created an implementation, and share the surprising results
in Section IV-F.
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Figure 4. Network topology for timing experiments

IV. EXPERIMENTS & RESULTS
A. Configuration

The server system that requested self-check measurements
was running 64 bit Windows 2008 SP2 Server on an IBM
x3650 M2 with 8GB RAM, an Intel Xeon X5570 CPU at
2.93GHz, and a Broadcom BCMS5709C Gigabit NIC. Our
server software is implemented in C++ and uses WinPcap
in order to determine the round trip times. We set a filter
so that WinPcap calls back to the server whenever it sees
one of our measurements outbound or inbound. When an
outbound measurement request is seen, the software updates
a pending measurement database entry with the timestamp
in microseconds according to WinPcap. When an inbound
measurement is seen, the software looks up the pending
record, subtracts the sent from received time, and stores the
RTT in the database.

The client systems were all 32 bit Windows XP SP3
running on Dell Optiplex 960 systems with 4GB of RAM,
an Intel Core 2 Quad CPU Q9650 at 3.00GHz, and Intel
82567LM-3 Gigabit NIC.

The network topology for the experiments is shown in
Figure 4. The switches are a mix of Cisco 3750/3750Gs, and
the routers are Cisco 6500s. For the multi-hop experiments,
we physically moved the same two hosts to each of the 1, 2,
3, 8, and 10 link distances from the server and measured at
each location. For the experiments involving 31 systems, the
lab where the systems resided was at the 10 link location.

For our self-checksum loop we used 2.5 million iterations,
for no reason other than that is how many the original
Pioneer used, and also because on the test machines this
yielded a time around 100ms. Generally speaking it is
desirable to keep the self-checksum around 100ms because
that is the commonly accepted threshold beneath which
human eyes cannot perceive changes, and it is desirable to
not lock the user’s system long enough for them to detect



116000 | °e o %8 B e © ® ‘@% i
115000 | A o 1
) .
= 114000 - ° 1
= 2
) .
= 113000 [ e b
g Attack Attack Attack
g 112000 [Absent Present Absent i
] o7, . @ ) e

110000 r = ¢ © * * o

109000 5 5 5

0 100 200 300 400
Measurement number
Figure 5. Network round trip time for 31 Dell Optiplex 960s over 10
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UI jitter. That said, the subsequent measurement which is
performed by the CMM component of Checkmate will add
to the time that the system is locked up. For instance hashing
a small kernel module might take 1ms, but hashing the
largest module, nr itself, can take around 50ms.

B. Timing results for 31 systems over 10 links

We have been running various versions of the self-check
function on many different hosts for around 2 years, and this
is our 6th iteration. During that time we had anecdotally
confirmed that different hosts of the same hardware type
exhibited the same timing characteristics. However in order
to more rigorously confirm homogenous timing behavior on
homogenous hardware, we were temporarily granted access
to a lab of Optiplex 960s.

In Figure 5, we can see that all of the hosts’ measurement
times cluster very tightly. The maximum standard deviation
for a host’s clean measurements was 436us, but the second
highest was only 139us. There is a one measurement partial
overlap visible at the beginning and end of the attack data.
This is because we did not wait until all hosts had the exact
same number of measurements before pausing and toggling
the attack.

In order to validate the overhead of the attacker, and
to be able to confirm in our data exactly when the attack
was installed, we also collected data about the self-reported
runtime of the checksum. Our experimental branch of the
code includes the use of rdtsc (read timestamp counter)
instructions so that the client can calculate and report to the
server its own perspective on the self-check code runtime.
This would never be used in the real system, because
an attacker could trivially forge the value, however it is
useful during experimentation to provide insight into timing
variation due to host effects vs. network effects. The data is
shown in Figure 6.

Being able to contrast these graphs helps clarify that most
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Figure 6. Rdtsc-computed runtime for 31 Dell Optiplex 960s. 2 second
measurement frequency.

of the outliers are due to variations in runtime, rather than
any other host or network effects. From a comparison of
network RTT to CPU-computed runtime we can see clear
correlation in most of the outliers. We are continuing to
analyze our self-check function to understand what could
cause outliers to exhibit faster and slower runtimes. However
the faster outliers are only around 600 to 800us faster that
their hosts’ averages. So even if they were exhibited by the
attack data, they would not be low enough to fall within the
expected runtime bounds. Overall this data clearly indicates
the ability to discriminate attacker timing overhead over 10
network links, a result that has not been previously shown.

C. Analyzing variation of timing behavior between hosts

Another aspect we wanted to evaluate within the all-host
data set was whether it was realistic to automatically set
alerting limits from the measurements collected from one
host, and apply those limits to all other hosts of the same
hardware type. For increased practicality of deployment in
commercial software there must be some way to generate
the expected baseline timing for hosts. This could take the
form of a software vendor keeping a master list of expected
runtimes on a per cpu/frequency basis. It could be profiled
and set on the first run, under the assumption that attackers
are not sitting in wait to attack a self-checksum system when
it is installed. Or it could be done by requiring the customer
to install and generate a baseline client timing on a known-
clean machine one time per hardware configuration deployed
in their environment. In this latter case, there is the need
to understand how many false positives would be incurred
by collecting baseline timing limits from a single host and
applying those limits as the alerting threshold on all other
hosts.

We generate a baseline a system by taking about 200
measurements, and then generate upper and lower control
limits (average 4 3 standard deviation) for use in a control



chart. Our server then has the ability to send an alert to
an analyst when a pre-specified number of consecutive data
points are out of control. Therefore we want to know what
this threshold should be set to.

Table V
COMPARISON OF DATA FROM HOST SPECIFIED IN THE ROW AGAINST
LIMITS DERIVED FROM HOST SPECIFIED IN THE COLUMN

host 17 | host 18 | host 19 | host 20 | host 21
host 15 | 1/190,1 | 6/190,1 | 9/190,1 | 9/190,1 | 9/190,1
host 16 | 1/190,1 | 2/190,1 | 4/190,1 | 2/190,1 | 2/190,1
host 17 | 1/190,1 | 3/190,1 | 4/190,2 | 4/190,2 | 3/190,2
host 18 | 0/190,0 | 4/190,1 | 6/190,1 | 5/190,1 | 4/190,1
host 19 | 0/190,0 | 0/190,0 | 0/190,0 | 0/190,0 | 0/190,0
host 20 | 0/189,0 | 4/189,1 | 4/189,1 | 2/189,1 | 3/189,1
host 21 | 0/189,0 | 0/189,0 | 2/189,1 | 1/189,1 | 1/189,1
host 22 | 1/190,1 | 1/190,1 | 1/190,1 | 1/190,1 | 1/190,1
host 23 | 0/190,0 | 1/190,1 | 3/190,1 | 1/190,1 1/190,1
host 24 | 0/189,0 | 3/189,1 | 2/189,1 | 2/189,1 | 2/189,1
host 25 | 0/190,0 | 4/190,1 | 8/190,1 | 6/190,1 | 3/190,1

Due to a lack of space, we show only a subset of the
comparison of all hosts to each other in Table V. The hosts
in a row has each of its data points evaluated to determine
whether it falls within the control limits generated from
the data for the host given in the column. Entries are of
the form X/Y,Z. X/Y is the ratio of total number of out
of control measurements to total number of measurements.
Z is the maximum number of consecutive out of control
measurements out of X. The maximum Z value for the entire
table suggests a threshold that could be set by the server as
the number of out of control measurements it should see
before it alerts, in order for it to have had no false positives
in this training set. So for instance, if we generated a baseline
and applied host 20’s limits to host 17, we would have seen
4/190 measurements that fell outside of the limits, with a
maximum of 2 of those 4 data points being consecutive. The
maximum consecutive out of control data points across all
comparisons was 2. This is in stark contrast to the behavior
in the presence of an attacker, where there will be many out
of control data points. The control limits for all hosts are
show in Table VI.

D. Measurement of two hosts at different network locations

We expect the number of hops that the client is away
from the server will affect the measured RTT. Therefore we
tested to see how much this affected the time by measuring
at vantage points from 1 direct link (connected via Ethernet
crossover cable) to 10 links (the maximum link count on the
testing campus.) Figure 7 shows the results of measuring two
hosts when moved to different link counts.’

3There were nine outliers below the clean measurements that were
cropped to provide better visibility of the gap in timing between traffic
over 8 links vs 10 links.
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Table VI
PER HOST CONTROL LIMITS IN MICROSECONDS

lower upper lower upper

limit ps | limit ps limit ps | limit ps
host1 110847 111317 | host2 110738 111403
host3 110635 111472 | host4 110850 | 111315
host5 110728 111453 | host6 110789 111407
host7 110733 111405 | host8 110773 111410
host9 110844 | 111356 | hostl0 | 110750 111473
hostll | 109786 112403 | host12 | 110825 111308
host13 | 110855 111340 | hostl4 | 110661 111396
hostl5 | 110740 111395 | hostl6 | 110705 111415
hostl7 | 110814 | 111282 | hostl8 | 110876 111302
host19 | 110853 111304 | host20 | 110841 111295
host21 | 110845 111321 | host22 | 110818 111260
host23 | 110849 111330 | host24 | 110827 111348
host25 | 110746 111451 host26 | 110755 111417
host27 | 110839 111314 | host28 | 110824 | 111330
host29 | 110714 111407 | host30 | 110758 111362
host31 | 110837 111295

An interesting observation is that there is very little
difference between the measurements that traversed one
router vs. those that traversed none. However once the traffic
traverses 3 routers, the RTT increases. In the future we
will test the hypothesis that the jump is primarily due to
traversing the site’s core router.

The procedure to set the bounds for a particular hardware
type is to measure it at 1 link and at the maximum number
of links on the LAN. From our previous section we know
that using the limits from any host of the particular hardware
type will work for the other hosts. So we can use the upper
limit from a host at 11 links, and the lower limit from the
host at 1 link, to obtain a very tightly bound for expected
response times for this hardware type at any location on the
LAN.

E. Performance measurement

Because timing-based attestation mechanisms should have
exclusive control of the system while they are performing
their self-check, this lockup of the system could lead to de-
creased performance. We wanted to know what performance
effects would be caused by taking control of a system during
attestation. We tested this with 2 measurement frequencies.
The first was a measurement every 2 seconds, which is the
fastest we allow our server to request measurements. The
second was measurement every 2 minutes, which is the
maximum frequency we have ever used on volunteer end
users, due to previously not having had performance mea-
surements. The data indicate there is negligible performance
effects for all tests except CPU performance when measuring
every 2 seconds.

AOGenMark [6] tests the CPU by performing a series
of complex calculations on a polygon mesh; the higher the
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Figure 7.

benchmark, the faster the CPU. Additionally, the user can
increase the computational load by increasing the number
of samples, although the term samples is not well defined
in the documentation. AOGenMark was run with 4 threads
each simultaneously executing on a different core. Each
thread had its number of samples set to 16. Ten tests
were performed, and the mean for these tests is shown
in Figure 8. This shows that for 2 minute measurement
the CPU performance overhead is negligible (it was less
than one standard deviation, .15 benchmark units), and
with 2 second measurements the overhead is 4.8%. This is
statistically signficant, but is in the expected range based on
how much time the self-check is excluding all other code
access, because the 111ms measurement duration is 5.55%
of a 2 second measurement period.

For network throughput testing, we used iperf [25]. We set
up an iperf server application on a non-target machine that
communicated with a client iperf program running on the
test machine. The iperf server communicated with the client
machine every two seconds to determine the throughput
capacity, in Megabits/sec, between the host and the client
over a 180-second interval. Ten 180-second interval tests
were measured. The mean and standard deviation of the
throughput capacities was calculated for each 180-second
run. The mean of the means was calculated over all ten of
the 180-second runs. Because the means for the 2-minute
measurements and 2-second measurements fall well within
one standard deviation (6.32 Mbps) of the test run with-
out measurement, there was negligible network throughput
impact. The normalized network performance is shown in
Figure 8.

Tozone [13] tests the time taken to write to a new file
and read from a file. The test file size and memory record
size used by system memory were set to 3,072 bytes. Two
thousand measurements were taken for each of the tests, and
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Network RTT for two Dell Optiplex 960s. 2 second measurement frequency, 2.5 million loops, varying network link counts.

File read no measurement
File read 2 minute
File read 2 second

File write no measurement
File write 2 minute
File write 2 second

Throughput no
Throughput 2 minute
Throughput 2 second

CPU no measurement
CPU 2 minute measurement
CPU 2 second measurement

09 098 1 1.02 1.04

Figure 8. Normalized performance overhead for file system, network
throughput, and CPU benchmarks. Values >1 indicate decreased perfor-
mance, values < lindicate improved performance.

the mean was calculated over the two thousand samples.
Because the means for the 2-minute measurements and 2-
second measurements fall well within one standard deviation
(7.07 seconds) of the test run without measurement, there
was negligible read or write performance impact. The nor-
malized file IO performance is shown in Figure 8.

Overall, measuring with either 2 minute or 2 second
frequency did not significantly affect these performance
measures. Although these measurements were meant to
determine the impact on measurement on the endpoint, they
also provide data about the effect of the endpoint’s load on
the observed RTT. We confirmed that the timing baseline
for the benchmarked host under load differed less than a
standard deviation from the host not being benchmarked.
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Figure 9. TPM tickstamp time for 32 Dell Optiplex 960s. 2 second
measurement frequency, 2.5 Million self-check loops.

FE. TPM tickstamp-based timing measurement for 32 hosts

All of the hosts for these experiments had a TPM vendor
ID that corresponded to STMicroelectronics, and the chip
was labeled on the motherboard as N18FPVLR. There are
32 hosts rather than 31 for the previous experiment, because
one host had the wrong software version for the timing tests,
but the software still was correct for TPM tests.

We requested TPM tickstamp measurements from the
same machines used in the timing measurements. Note that
the Sth line from the top in Figure 9 corresponds to a host
for which the TPM tickstamp times are far more variable.
We had used this host extensively in previous experiments,
and the times that were previously reported had much lower
variation. Therefore the only explanation that we can offer at
this time is that we may have “worn out” this TPM through
overuse.

From this data we can conclude that while the attacker is
potentially detectable, contrary to expectations, each host’s
TPM has slightly different timing despite being the same
hardware. Thus we cannot set a single baseline for the
expected number of TPM ticks for the self-checksum across
different hosts. We are not aware of this behavior having
been previously reported, and this is one of the key results
derived from actually implementing the proposed TPM
tickstamp protocol. However we still believe there is room
for utilizing the tickstamp timing on real systems. This
is because in the ideal case a TPM is provisioned when
it first enters an organization. A conservative provisioning
process will also boot into a dedicated environment such
as a Linux boot CD in order to communicate with the
TPM with a significantly reduced possibility of a man-
in-the-middle attack occurring where an attacker reports a
public key for a private key that he, rather than the TPM
controls. It is reasonable to expect that if the TPM requires
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a single initial “hands-on” provisioning process, then another
tool can create a baseline for the number of TPM ticks to
compute the self-check. This initial baseline can be used
to bootstrap any future updates that occur to the self-check
function. It is only necessary to include a special “update
tickstamp” action in the client. This would invoke the
previous version tickstamp-wrapped self-checksum, send the
results, then invoke the new tickstamp-wrapped checksum,
and send the results. If the server validates that the previous
version tickstamp timing is within the expected range, then
it will accept in the integrity of the new version, and can
use multiple results to set a new TPM ticks baseline.

There is one further complication for practical use. Due to
latency with the communication and processing performed
by the TPM, the absolute time it takes to perform a
tickstamp-based attestation is approximately 1.3 seconds for
these TPMs and these hosts. From the previous experiment
we know the absolute runtime for this self-check function
with this number of iterations on these systems to be
approximately .1 seconds. Therefore we are left to conclude
that there is at least 1 second of overhead for performing
the two tickstamp operations on these TPMs. In which case
there is no way that we can decrease the number of iterations
of the checksum loop in order to make the time significantly
less perceptible to the user.

Thus, while the TPM tickstamp method gives us higher
confidence in the detectability of an attacker than simply
hashing our code and extending it into a Platform Control
Register, it is constrained in the situations in which it can
be used. Past work that had attestation times on the order
of seconds [21] [7] have suggested use cases where the
attestation is only invoked in response to special events such
as an authentication attempt, where a user may be more
willing to wait a short duration of the processing.

G. Variation in TPM behavior per manufacturer

When trying to understand the reason for the variation
in timings between hosts with the same TPMs, we reasoned
that one of the main differences between each of the hosts is
that they did not have the same keys. Therefore we wanted
to see if the timing behavior was in any way dependent on
the signing key used by the TPM. To test this we scripted
tools to rekey the TPM, perform 10 tickstamp timing mea-
surements, average the resulting delta ticks, and then repeat.
Due to the latency incurred from rekeying the TPMs and
performing the tickstamp operations, and the fact that we
had only temporary access to the lab machines, we were only
able to do this for 50 keys on 10 hosts. Overall the results
did not seem to indicate per-key variability, and an example
distribution is shown in Figure 10. However, we also tested
this theory on some of our Dell Latitude laptops and found
anecdotally that the Broadcom TPM on these machines
exhibited differing tickstamp times depending on the key.
An example for a Latitude D820 is shown in Figure 11.
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TPM in Dell Latitude D820.

We believe more work should be done to understand why
different TPMs are exhibiting different timing behavior.

H. Proxy attacks against timing-based attestation

Proxy attacks are the second most effective attacks against
timing-based attestation systems, behind TOCTOU attacks.
This is because it is difficult to achieve message origin
authentication when it is assumed that an attacker has full
access to any cryptographic keys in memory. We have
implemented a proxy attack to understand how much latency
is incurred by a host resending its measurement request to
another host. We performed these tests for the best-case
situation for the attacker, where the clean host and the
proxying host are on the same ethernet segment. The results
are shown in Table VII. There is about a 1.5ms overhead
visible when the attacker is proxying to a host of the same
speed. However when the attacker proxies to a faster host,
this overhead is easily negated. The results of Table VIII
indicate that the granularity of TPM ticks for these TPMs
is too coarse to effectively detect the 1.5ms overhead.
And again, when the attacker forwards to a significantly
faster machine, the timing decreases, allowing an attacker
to transparently forge results.

We believe there is potential for applying VIPER’s [10]
system for detecting the latency inherent in proxying com-
munications to our work. However, as was mentioned in
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Table VII
AVERAGE RTTS IN MICROSECONDS, WITH AND WITHOUT PROXY
ATTACKS, 100 MEASUREMENTS EACH

Average RTT | Average RTT, proxied to
No attack Host 3 (Optiplex 960)
Q9650 at 3GHz
Host 1, Optiplex 960 109897 s 111455pus
Q9650 at 3GHz
Host 2, Latitude D630 | 128282us 111320ps
T8300 @ 2.4GHz
Table VIII

AVERAGE RUNTIME IN TPM TICKS, WITH AND WITHOUT PROXY
ATTACKS, 100 MEASUREMENTS EACH

Average ticks
No attack

Average ticks, proxied to
Host 3, Optiplex 960
Q9650 @ 3GHz

Host 1, Optiplex 960
Q9650 @ 3GHz

844.25 tpm ticks | 844.87 tpm ticks

Host 2, Latitude D630
T8300 @ 2.4GHz

16141 tpm ticks 15720 tpm ticks

the paper, when the latency is on the order of Ims as it
is in our results, application of their system as-is will be
difficult, so it will require modification. We also believe
that proxy attacks are currently detectable on LANs with
host-to-host network visibility. Because the attesting system
should be locked up during attestation, any communication
seen destined to and returning from another host during the
attestation time window is immediately suspicious.

V. “THE ONLY WINNING MOVE IS NOT TO PLAY”
OR “ET TU TOCTOU?”

As we have shown above, Checkmate can provide prac-
tical timing-based attestation of code integrity for COTS
OSes like Windows. The ability to say “This code ran
unmodified.” is a powerful capability not found in today’s
commercial security software that we think needs to be
added. Unfortunately this is not enough to make the software
trustworthy.

The problem of Time Of Check, Time Of Use
(TOCTOU) attacks has been briefly mentioned implic-
itly or explicitly in numerous trusted computing pa-
pers [20] [17] [21] [7] [9] [10] [28], but it is not often
addressed head on. The only paper we are aware of which
did explicitly try to tackle one facet of this problem was
“TOCTOQOU, Traps, and Trust” [2], however it was concerned
only with the gap between load-time and runtime measure-
ment and how load time measurement was insufficient. It
did not deal with the more subtle attacks that can target
runtime attestation. We believe that the effects of TOCTOU
attacks are currently under-stated when dealing with remote
attestation systems where the attacker is assumed to be at the



same privilege as the defender. Attestation always requires
some amount of measurement, and all measurement systems
can potentially fall victim to TOCTOU attacks due to control
flow violation which occurs at a strategic point before or
during the attestation code execution.

There are 3 requirements for a TOCTOU attack to be
performed against a trusted computing system:

1) The attacker must know when the measurement is
about to start.

2) The attacker must have some un-measured location to
hide in for the duration of the measurement.

3) The attacker must be able to reinstall as soon as
possible after the measurement has finished.

These requirements are a useful conceptual framework for
examining trusted computing systems, because if any one
of these conditions is broken, the TOCTOU attack will not
succeed with 100% probability. We differentiate guaranteed
success TOCTOU attacks vs. probabilistic TOCTOU attacks
because real world guaranteed attacks more devastatingly
undercut the trustworthiness of trusted computing. And
when the attacker can be forced into a probabilistic TOC-
TOU attack, defenders are forcing a race condition back
on the attacker. Because whatever capability the attacker
temporarily removes degrades his control, and the possibility
of detection increases. For instance an attacker who was
capturing keystrokes may miss important characters; an
attacker who was hiding files may have them detected by 3rd
party on-access scanning; or an attacker who was denying
execution to security programs by terminating them before
they launch could have an execution slip through.

A. Countering requirement 1

Virtualized security systems [8] [26] [19] or those us-
ing System Management Mode (SMM) [17] [1] typically
counter requirement 1 only by their assumptions. They
assume the attacker cannot reside at the same privilege
level as the defender (that is the hypervisor layer). They
utilize the opportunity for the VM to be frozen in place and
measured at intervals unknown to the attacker. On the other
hand, when measurement takes place on demand in response
to actions performed inside the virtualized environment, it
may be possible for the attacker to remove modifications
before the event is triggered. Tools like Copilot [15], which
perform measurement from outside of the CPU and have
direct memory access can also measure memory in a way
where the attacker cannot know when the measurement is
about to take place.

For self-checking systems where the attacker is assumed
to be at the same privilege as the defender, we do not believe
it is possible to fully counter requirement 1 with just the
techniques proposed to date. This is because it is seemingly
always possible for an attacker to know when and what type
of measurement is about to begin. This can be achieved by
placing an inline hook into the self-check code at a location
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on the path immediately prior to the self-check reading
any of its own memory. The problem is one of obvious
and deterministic control flow paths to the self-check code.
Even if the code’s capability could be expanded to guarantee
runtime control flow integrity, as we have started to do, it
can no more guarantee control flow integrity before it runs
than it can guarantee code integrity before it runs.

An example of future work to counter this requirement
would be to augment control flow with a system like
TEAS [5]. By injecting agents on the fly, an attacker cannot
automatically analyze the code fast enough to recognize that
they are providing new control flow to the existing self-
check mechanism. These agents could perform the prolog
of a self-check, and incorporate an initial measurement of
the existing self-check agent before jumping into a random
block of the existing self-check function and allowing it to
run to completion. In this way the agent which is pushed
to a system just in time would be able to detect the code
integrity modifications that the existing self-check function
cannot detect itself.

B. Countering requirement 2

Some approaches have implicitly attempted to counter
requirement 2 by measuring or proposing to measure all of
memory [21] [4] [7]. It was also suggested [7] to page out
and overwrite all memory that is not used for the verification
function. On the face of it, this would seem to counter
requirement 2. However that assumes that every single page
of memory that is subsequently checked when it is read back
in can be validated. In practice we do not believe it will
be possible to apply whitelisting to dynamically allocated
memory pages, which can contain attacker code, and we do
not think it is likely that a blacklist would exist for malware
sophisticated enough to be targeting self-check functions.

For attestation of desktop systems this would not require
abandoning the kernel, but may require augmenting a ker-
nel agent with another smaller root of trust. Systems like
PioneerNG are implemented in SMM. While conceptually
SMRAM is meant to be used as a small, isolated memory
region, it is only isolated from the outside. An attacker inside
can access all system memory. That would mean even self-
checking code in these locations would still be vulnerable to
an inline hook placed at their start, followed by the attacker
removing himself to a safe location in physical memory. A
single un-measured function pointer used by 3rd party code
would then allow the attacker back into SMM.

Therefore approaches which attempt to measure all of
memory to prevent TOCTOU attacks would seem to only
work when all memory under measurement can be isolated
and controlled. Systems like Flicker [11] which use Intel
Trusted Execution Technology, or SecVisor [19] which uses
hardware support for virtualization plus an I/O Memory
Management Unit, may be required to counter the attacker
having an unmeasured location to hide in.



C. Countering requirement 3

Because kernel-mode self-checksumming systems have
difficulty with countering the previous two requirements
without significant assumption changes, we have made some
improvements for countering requirement 3. We focused on
removing as many generic, deterministicc TOCTOU rein-
stallation avenues as possible. The ability for an attacker
to corrupt return addresses and have our code return to
attacker code undetected was one area we mitigated. Because
of our use of imported functions, an attacker could gain
control soon after the self-check is done by placing an inline
hook or an IAT hook into code we call. Our extension
of the minichecksum mechanism to cover arbitrary ranges
helped mitigate this. And the existing technique of placing
checksum data onto the stack so that interrupts destroy it
is another mechanism that tries to maintain control flow
integrity in addition to the existing code integrity. Although
software-based attestation constructions are built primarily
for code integrity [14], if they do not make these inclusions
of control flow integrity, they remain vulnerable to TOCTOU
attacks.

However there still remain other mechanisms for the
attacker to perform a TOCTOU and regain control soon after
our code releases control of the processor. For instance we
have implemented a TOCTOU attack which uses a Windows
DPC to schedule attacker code to run. The attacker places
himself as first to be removed from the DPC queue, which
begins emptying very soon after control is released by our
kernel module. When the attacker code runs, it reinstalls
the hook that allows him to gain control when attestation
is about to begin. This is a simple and effective way for
the attacker to never have his modifications detected by
the attestation mechanism. It is of course a losing game to
engage in an arms race and have the attestation mechanism
measure the DPC queue and every other way the attacker
can reinstall himself.

Future work can combat this by making it difficult for
the attacker to know the true end time of the self-check
function. Such an approach could be achieved by having
multiple CPUs invoking the same self-check function in
parallel. Existing approaches such as PioneerNG & MT-
SRoT [28] try to have multiple CPUs finish their checksum
as close to the same time as possible. Instead checksum
completion could be displaced in time so that when one self-
check completes, others are still running on other CPUs. If
an attacker has set himself to reinstall as soon as possible
after the self-check is done on one CPU, the other CPUs
may end up reading his reinstallation of his modifications.
It would then also be desirable to randomize the order in
which CPUs are invoked, so that the attacker cannot know
which CPU will finish last, and simply schedule himself
to only reinstall after that CPU’s self-check finishes. While
we believe there will always be the possibility for attacks
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to use TOCTOU attacks with course granularity reinstall
(e.g. a conceptual “sleep(10)”), if the defender can force
the attacker to temporarily relinquish control, it is a higher
measure of success than is achieved today. The defender has
then opened a window of time in which the attacker is more
vulnerable to detection and removal.

VI. CONCLUSION

In this paper we have shown the results of independent
implementations of both software and hardware timing-
based attestation systems. We have shown that an attestation
system for a commodity OS can compensate for ASLR
effects, does not need to know how to talk directly to NIC
hardware, and has attacker overhead which is detectable
over 10 network links. We have also shown that contrary
to expectations, TPMs of the same model and manufacturer
return a different number of ticks for computing the same
function. This means that unlike software timing-based
attestation, no single “expected” baseline can be set for
different hosts; each host must be baselined independently.
We have also clarified that the majority of generic attacks
against timing-based attestation systems to date are in fact
TOCTOU attacks. We described the conditions necessary for
an attacker to achieve a TOCTOU attack, as well as areas
of future work to create generic countermeasures against
TOCTOU attacks.

We currently consider timing-based remote attestation to
be in its infancy, and it looks much like the early days
of cryptography, where heuristics abounded. Even though
cryptography has been formalized to the point of having
provably secure systems, these are not actually the systems
being used on a day to day basis. Instead, algorithms like
Rijndael were accepted for the AES standard based on
its resistance to established attack techniques, as well as
tradeoffs such as performance. In the same way we believe
that timing-based attestation mechanisms can be made more
robust through increased research and implementation in this
area. To this end we will be making our current reference
implementation openly available, in the hope that others
will help further improve the state of the art for remote
timing-based attestation.
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