
A Framework to Eliminate Backdoors from Response-Computable
Authentication

Shuaifu Dai1, Tao Wei1,2∗, Chao Zhang1, Tielei Wang3, Yu Ding1, Zhenkai Liang4, Wei Zou1

1Beijing Key Lab of Internet Security Technology 2University of California, Berkeley

Institute of Computer Science and Technology 3College of Computing, Georgia Institute of Technology

Peking University, China 4School of Computing, National University of Singapore

Abstract—Response-computable authentication (RCA)
is a two-party authentication model widely adopted by
authentication systems, where an authentication system
independently computes the expected user response and
authenticates a user if the actual user response matches
the expected value. Such authentication systems have
long been threatened by malicious developers who can
plant backdoors to bypass normal authentication, which
is often seen in insider-related incidents. A malicious
developer can plant backdoors by hiding logic in source
code, by planting delicate vulnerabilities, or even by using
weak cryptographic algorithms. Because of the common
usage of cryptographic techniques and code protection in
authentication modules, it is very difficult to detect and
eliminate backdoors from login systems. In this paper,
we propose a framework for RCA systems to ensure that
the authentication process is not affected by backdoors.
Our approach decomposes the authentication module into
components. Components with simple logic are verified
by code analysis for correctness; components with cryp-
tographic/obfuscated logic are sandboxed and verified
through testing. The key component of our approach is
NaPu, a native sandbox to ensure pure functions, which
protects the complex and backdoor-prone part of a login
module. We also use a testing-based process to either detect
backdoors in the sandboxed component or verify that the
component has no backdoors that can be used practically.
We demonstrated the effectiveness of our approach in
real-world applications by porting and verifying several
popular login modules into this framework.

I. INTRODUCTION

User authentication is the basis of access control and

auditing. Through the login process, the authentication

system verifies a user’s identity to grant the user proper

privilege in the system. The important role of a login

module makes it an attractive target for attackers. A

common type of login module attacks is through back-

doors: malicious developers intentionally leave code

in a login module to bypass normal authentication,

allowing them to get unauthorized privilege. There have

been many incidents where insiders left backdoors in

login modules to gain unauthorized access to computer

systems, e.g., the backdoor in Cart32 Shopping Cart [5].

*Corresponding author. Email: wei tao@pku.edu.cn

Due to the complexity of large software systems, it is

very hard to completely detect this type of threats.

Based on how the authentication system interacts with

users, it typically falls into two categories: after a user

responds to the authentication challenge, the authentica-

tion system either compares the user’s response with an

expected value computed from known credentials of the

user, or uses the user’s response as part of a complicated

authentication computation. The authentication system

of the first type computes the expected response value

using credentials on the server. The user is authenticated

if the computed value matches the user’s response.

We refer to this type of authentication as response-
computable authentication (RCA). In the other type of

authentication systems, the user response is used as an

input to the authentication computation, which is based

on techniques such as public-key cryptography [26] and

zero-knowledge proof [6]. In this paper, we focus on

backdoors in the first type of authentication system,

response-computable authentication (RCA), which is

widely used in authentication systems.

Malicious developers have various ways to plant and

hide backdoors in RCA login modules. The simplest

way is to add a hard-coded username/password pair.

Alternatively, a backdoor condition can be an obfus-

cated relationship between the username and password.

Besides user inputs, a backdoor may also be triggered

by system events or internal state of the authentication

process. Moreover, malicious developers can exploit a

vulnerability in the login module to circumvent the

normal authentication process. They can also embed

cryptographic backdoors in RCA modules, e.g., using

a carefully constructed insecure hash function to make

two responses collide at a controllable probability to

allow the backdoor’s creator to login.

Although it is straightforward to detect hard-coded

username/password pairs, it is very difficult to use

program analysis to find backdoors in login modules

that involve heavy cryptographic computations or code

protection and obfuscation. Manual source code review

is also difficult to detect cryptographic backdoors. Fur-

thermore, a malicious developer can directly instrument

2012 IEEE Symposium on Security and Privacy

© 2012,,,,,,,,,,,,,,,,,,,,,,,, Shhuaifu Dai. Under license touaihahhhhhhhhh IEEE.
DOI 10.1109/SP.2012.10

3



0) login request

1) Challenge

ACCEPT

REJECT
2) Response

User Server

Compute Response
based on 

(Password, Challenge)

=

3) Response

4) Y

4') N

Usually, step 2-4 
are combined to 
a function L()

Figure 1. Typical steps in Response-Computable Authentication
(RCA).

backdoors at the binary level. For example, a trojaned

compiler can create a backdoor in the programs it gen-

erates, which is based on hard-coded passwords [32].

Figure 1 illustrates the process of a typical two-party

login protocol using RCA, based on techniques such

as plain text password, CRAM-MD5 [21], RSA Se-

cureID [3], time-based one-time password (TOTP) [4],

and HMAC-based one-time password (HOTP) [24]. On

receiving the authentication request (step 0), the server

generates a challenge to the user (step 1). After it

receives the response from the user (step 2), the server

computes the expected response value using the cre-

dentials on the server (step 3). It authenticates the user

if the user’s response matches the server’s computed

response value (step 4). Step 3 and step 4 form the

RCA authentication procedure. We use L() to denote

the RCA decision function. It maps user response to

a boolean value, TRUE for “accept” and FALSE for

“reject”.

By studying several types of RCA backdoors, we

observe that all such systems treat the decision function

L() as a blackbox: they authenticate users only by

the return value of L(), no matter how this return
value is generated. As a result, they cannot distinguish

authentication decisions resulted from authentic user

response and those resulted from backdoors. For ex-

ample, when the L() contains a backdoor using a hard-

coded username, it immediately returns true when the

username is provided.

In this paper, we design a secure framework for RCA

to ensure that the authentication result is not affected by

backdoors. Since backdoors in login modules are caused

by the blackbox nature of the authentication process, the

high-level idea is to decompose the RCA login module

into components: for components with simple logic,

verify theirs correctness by code review and analysis;

for components with cryptographic/obfuscated logic,

sandbox them to prevent the logic from being affected

by attackers, and then verify the logic through testing.

The decision function L() has two main components,

response computation (denoted as f()) and response
comparison. The response comparison is a simple com-

ponents that can be directly verified by code review,

but we need to make sure it cannot be bypassed.

The response-computation function depends on assistant

components, such as reading the password database.

The assistant components are typically simple and can

be checked for backdoors by code review and anal-

ysis. The major challenge arises from the response-

computation function, which often contains a lot of

cryptographic operations, making it very difficult to

detect backdoors by code inspection. Our solution en-

sures that the response-computation function to be a

pure function, which returns the same result without

side effects each time it is invoked on the same set of

arguments [14].

Our approach ensures response-computation function

to be free of backdoors based on the following ob-

servation: for one login try, there is only one correct

response which we can explicitly get from the response-

computation function. Following this observation, we

use formal analysis to identify the upper bound of

backdoor usability in a login module, which forms a

theoretical basis of our testing methods. Through the

testing, either we can detect the possible backdoor or we

can ensure the backdoor cannot be used by its creator.

To the best of our knowledge, this approach is the first

to give formal analysis of probability of authentication

backdoor usability.

To achieve this goal, we design NaPu, a native

sandbox to ensure pure functions, and use it to purify

the response-computation function. NaPu has several

features: vulnerability isolation, global state isolation,

and internal state reset. These features can prevent an

attacker from triggering backdoors stealthily. We build

the NaPu sandbox based on Native Client (NaCl) [37],

and implement our framework to secure RCA modules.

We ported several widely used login modules, such as

CRAM-MD5, HOTP, TOTP, into this framework, and

verified that these ported libraries are backdoor-free.

Our results showed that our solution can be easily ap-

plied to real-world systems with acceptable performance

overhead.

In summary, we develop a solution to ensure that

response-computable authentication is free of impacts

from backdoors. Our solution either detects hidden

4



backdoors or ensures the malicious developer cannot

bypass authentication even with a backdoor planted

in the authentication process. Our solution makes the

following contributions:

• We propose a novel framework to guarantee that

the decision of an RCA login module is not affect-

ed by backdoors. The key idea is to ensure each

sub-component of the authentication process free

of backdoor influence, either by analysis of simple

application logic, or by sandboxing and testing

cryptographic/obfuscated logic.

• We give a systematic analysis of authentication

backdoors, and formally prove the upper bound of

possibility that a backdoor can be used by attackers

in an RCA login module.

• We build NaPu, a NaCl-based pure-function-

enforcing sandbox, to support the framework.

• We have prototyped our framework and ported

many widely-used login modules. Our evaluation

verified that they are free of backdoors.

The rest of this paper is organized as follows: Sec-

tion II introduces RCA backdoors and the adversary

model. Section III describes our intuition and approach

design. Section IV analyzes the security of our solution.

Section V explains our prototype implementation. We

present the evaluation results in Section VI. Section VII

discusses limitation of our solution. We discuss related

work in Section VIII. Section IX concludes this paper.

II. BACKGROUND

In this section, we describe the adversary model for

our approach, i.e., what malicious developers can do and

what they cannot to launch an RCA-backdoor attack.

Furthermore, we discuss characteristics of backdoors in

RCA login modules, and categorize these backdoors.

We also introduce the concept of pure function, which

is the basis of our solution.

A. Adversary Model

We focus on RCA backdoors in login modules. The

backdoors are implemented by malicious developers

who have the opportunity to access developing envi-

ronments and modify code or binaries. These malicious

developers include malicious insider developers and

even intruders. They can implement backdoors in soft-

ware during the development process, but they cannot

interfere in the deployment environment.

Methods to plant backdoors. Backdoors can be plant-

ed in different ways. The straightforward way is to

modify the source code directly. For example, in the

ProFTPD incident [2], the intruder concealed a back-

door in the source code package. The malicious de-

veloper can modify the development environment, such

as the compiler. Thompson’s compiler backdoor [32]

is such an example. The malicious developer can also

directly modify the binary code to insert a backdoor.

The latter two types of backdoor-planting methods

cannot be detected by source code review.

Methods to avoid detection. We assume malicious

developers cannot use obfuscation or anti-debugging

techniques to build backdoors, which are not permitted

when code review is required. However, the attacker

still has a number of ways to prevent the backdoor

from being detected. They may construct a subtle

vulnerability that eludes source code inspections, and

gain system privilege by a malformed input. They may

design and use a weak cryptographic algorithm in

the login modules, for example, using insecure hash

functions with a weak collision probability.

Attacker’s Limitations. Similar to [18], we assume

that only few developers act maliciously, and they

cannot compromise the source code review and software

testing process. Moreover, they cannot compromise the

deployed systems where the login module runs, so the

operating system modules are trusted, which provide

file reads, network communication, and random number

generation. In other words, we do not consider the

attacks in which the user-space login module with

backdoors can directly control the kernel of operating

system (e.g., a rootkit) or modify system libraries. In

addition, we assume the backdoor creators cannot mod-

ify the password database in the deployed systems. Such

attacks can be simply identified by database auditing.

B. Types of RCA Backdoor

A general RCA decision function L(), shown in

Figure 1, takes inputs from users U and global states G,

maintains internal states I, and returns a boolean value,

TRUE for accept and FALSE for reject. Specifically,

the response-computation component of L() generates

an expected response Response′, and the response-

comparison component of L() compares Response′

with the user’s response Response. Based on how

Response is used in the login module with a backdoor,

we classify backdoors into two categories:

Type T1: Bypassing response comparison
(Response′ �= Response): In this category, the attack-

er can authenticate successfully regardless of the value

of Response and Response′, because the response-

comparison step is bypassed. The attacker can login

even when the response-computation function f() does

not compute any response at all. The bypassing is

usually triggered when some special conditions are met:

Based on L()’s input type, there are three basic types

of trigger conditions, listed as follows.

• U-triggered backdoors. Special user inputs U can

be used to trigger hidden logic or intended vulner-

abilities in L() to bypass the comparison statement

5



static int i=0;
...
i++ //record the login attempt number
if (i%10==0)
{
response = str.revert(challenge);
// transform based on the challenge
}
return response;
...

Figure 2. An internal-state triggered backdoor example.

and force L() to directly return TRUE.

• G-triggered backdoor. Global states G, such as

system times and MAC addresses, can also be

used. For example, between 4:00am and 4:01am,

L() directly returns TRUE regardless of user’s

response.

• I-triggered backdoor. Internal states I can be a kind

of trigger. For example, L() can record the login

failure frequency and return TRUE if the failure

frequency falls into a specified range.

Note that all these three kinds of trigger conditions

and their combinations can be used to implement

backdoors. We can eliminate this type of backdoors

if we ensure that the response comparison cannot be

bypassed.

Type T2: Controlling computation of expected re-
sponse (Response′ = Response): In this category, the

response comparison is not bypassed, but the response-

computation component is affected by attackers. Recall

that the response-computation function f() generates a

response Response′, which is compared to Response
to decide whether the user (or attacker) can login.

However, as the developer who writes f(), the attacker

can plant backdoors to make the response generated by

f() predictable. Ideally, the expected response should

only depend on the challenge and the user’s password.

Based on how the backdoor in the response-computation

function affects the expected response, we further classi-

fy this type of RCA backdoors into two sub-categories.

• Type T2a: Response computation depends on
information other than challenge and password.

In this category, when given a specific pair of

password pw and challenge cha, the response-

computation function can generates different

responses, depending on the value of (U, G, I).

The attacker can predicate the response if when a

special condition is planted in the login module.

For example, the attacker can plant a hard-coded

pair of username and password in f(). When the

hard-coded username is supplied in U, f() uses

the hard-coded password to compute a response,

which makes the response predictable by the

attacker.

Figure 2 shows another example. The response

computing function f generates a response

that is the bit-wise inverse of the challenge

every ten login attempts (i.e. internal states).

So the backdoor attacker can always send the

bit-wise inverse of the challenge to the server

and authenticate successfully with a probability of

1/10.

This type of backdoor can be eliminated if the

computation function f() is assured to depend only

on cha and pw, i.e., for a given pw and cha, f()
always generates the same response. Therefore,

the response-computation function f() should only

perform pure computation, without side-effect

and dependencies to external or persistent internal

states. This requirement can be satisfied if we

ensure that the response-computation function is a

pure function, which is introduced in Section II-C.

• Type T2b: Response computation has collision-
based backdoors.

In this category, when given specific password

pw and challenge cha, the response-computation

function f() generates the same response

Response′. Response′ is determined by the

password pw, which is set by the normal user and

is unknown to the attacker. Therefore, the attacker

cannot predicate the exact response generated by

f().

Given a challenge, if the output of f() is different

for different passwords (i.e. f()’s value space

is uniform distributed), the attacker can only

login successfully with a probability equals to

that of guessing the right password. However, the

malicious developer can implement a function with

a high weak-collision probability. For example,

given a challenge cha0, f() may output res0
for half of possible passwords, which allows the

attacker to login successfully with a probability of

1/2 using the response res0.

This kind of backdoor, called collision-based back-

door, can hardly be detected by traditional program

analysis methods, but it can be eliminated if we

can measure the computation function’s collision

probability. Again, it requires that f() is assured

to depend only on cha and pw.

6



A(User) B(Server)

password 
database

Challenge
Generator

(login request)

idA

(challenge)

no
REJECT

yes

ACCEPT

(response)

res

f

NaPu

cha pwA

res

=

cha

idA
.
.
.

.

.

.

.

.

.

pwA
.
.
.

memory
exception

Figure 3. New RCA framework.

From the above discussion, we can see that ensur-

ing the response-computation function to perform pure

computation is the basic to prevent Type T2 backdoors.

Next, we introduce the concept of pure function.

C. Pure function

A function is called pure, if the following two prop-

erties hold [14]:

• It has no side effects, i.e., the evaluation does

not have any visible effects other than generating

the function results. Functions those modify argu-

ments, global states or hard disk file are not free

of side effects.

• Its execution is deterministic, i.e., given the same

set of function arguments, it always generates the

same result.

Pure functions introduce important features to simpli-

fy security analysis. For example, the password encrypt

function crypt() in POSIX should be a pure function.

Given a plain password and a salt, cyrpt() should return

a fixed encrypted password. Moreover, cyrpt() should

be side-effect free, e.g., it should never modify any files

on the disk or modify other global variables in the caller

procedure’s address space.

There are many solutions to provide pure function

assurance. For example, Finifter et al. [14] presents a

technique to implement verifiable pure functions in Java.

III. SYSTEM DESIGN

In this section, we introduce our new RCA frame-

work, which uses a function-purifying sandbox to pre-

vent backdoors. We introduce the framework in general,

describe its key component — the NaPu sandbox, and

illustrate the steps to eliminate backdoor from RCA

login modules.

Input

InterfaceNaPu

Interface

Output

Deterministic 
Memory 
Allocator

NaCl 
Sandbox

Response 
Computing 

Function
Memory 

Wiper
Instruction 
Validator

Pure Runtime 
Interfaces

Figure 4. NaPu architecture.

A. New RCA framework

A backdoor takes effect when it affects the decision

of an authentication module. Strictly speaking, the au-

thentication decision of an RCA module should only

be based on a user’s credentials on the server and the

user’s response to challenges. Other requirements, such

as the valid time period to login, are not part of the core

authentication process. However, when a system treats

the authentication module as a blackbox, it is impossible

to know how the decision is made.

To address this problem, we design an approach that

partitions the RCA into components and ensures that

the computation in each component is not affected by

backdoors: Specifically, some components are trusted,

such as the interfaces provided by the operating system;

simple components can be verified by code analysis;

other components are put into a sandbox environment

to guarantee they are not affected by backdoors.

Figure 3 shows our new RCA framework. It first

makes the response comparison explicit, so that it can be

verified as a simple component. It also identifies other

simple components that can be verified, such as lookup

of password databases. Other components, including

the response-computation function f is purified by the

NaPu sandbox.

Based on this framework, we make formal analysis of

the upper bound of backdoor usability (Section IV-B)

and use a collision testing to estimate the maximum

probability of a backdoor. If the probability is low

enough, the backdoor cannot be practically used by

attackers; Otherwise, our approach detects the backdoor.

B. NaPu: A native sandbox for purifying functions

The key component of our approach is a function-

purifying sandbox called NaPu, a function-level sand-

box environment for native binaries. It consists of an

7



Explicit response 
comparison

Function 
purification

Unsecure Login 
program

Secure Login 
program

Secure function
testing

Decomposition Sandboxing Collision Testing

Vulnerability 
Isolation

Internal State
Resetting

Global State
Isolation

T1 T2a T2b

Backdoors

T2a T2b

Backdoors

T2b

Backdoors

Weak Function
Detection

Transparency
Enhancing

Figure 5. Countermeasures of defeating backdoors in RCA.

inner sandbox and four components: deterministic mem-

ory allocator, memory wiper, pure function interfaces

and instruction validator, shown in Figure 4. We use the

Native Client Sandbox [37] to provide a vulnerability

isolation environment. The instruction validator of NaPu

further makes sure that only deterministic instructions

are allowed. For example, CPUID and RDTSC are

prohibited. We use additional components to provide

two additional properties.

Global state isolation. The pure function interfaces

and instruction validator prevent the untrusted module

from getting the global states that can be used as a

trigger, such as the system time. If the function running

in NaPu calls the special APIs or instructions to get

global states, NaPu will throw an exception.

Internal state reset. The deterministic memory al-

locator and memory wiper will initialize the program

states before every invocation of the untrusted module,

to prevent backdoor from being triggered by persistent

internal states. For each login request, if the allocated

memory address is different, this address could be used

to break the pure function requirement. Therefore we

use the deterministic memory allocator to make sure

that, for each login request, NaPu will start a new

segment from a fixed address, and for each function

executed in NaPu, its memory address is a fixed value.

We also using the memory wiper to ensure all new al-

located memory buffers are filled with zero to eliminate

the uncertainty in memory allocation.

With these properties, the only two parameters that

the NaPu receives are challenge, cha, generated by

server and password, pw, from password database. Then

we can confirm the response-computation function f is

a pure function, which means the internal behavior of

f is always the same no matter what input is. For the

same cha and pw pairs, the computed response must be

identical.

Such a sandbox can prevent a malicious developer

from triggering backdoors using controllable inputs. It

also makes sure the return value of f is only affected by

cha and pw, which are not controllable by the malicious

developer. So the backdoor tester and the malicious

developer are in the same position and we can use

collision testing to get the maximum probability of the

backdoor.

C. Steps to eliminate backdoors using our RCA frame-
work

Based on the framework and the NaPu sandbox,

Figure 5 shows the overall process of securing RCA

modules against backdoors, which consists of three

steps:

1) Explicit response comparison: Explicit response

comparison is used to make sure that the return value

of L() is derived from comparison of expected response

and the actual user response.

We divide the verification process L() into two step-

s: response computation and response comparison —

to increase the execution transparency. Note that the

response-computation function f usually contains a lot

of cryptographic computations and is backdoor-prone.

We put it in NaPu to prevent control flow hijacking

(e.g. through exploiting vulnerabilities in f ). This step

can guarantee that the comparison statement cannot be

bypassed, and eliminates T1-type backdoors directly.

2) Function purification: Once the response-

computation function f is put in NaPu, and it can

only take the explicit inputs (i.e. the challenge and

password) as its arguments. Furthermore, for each run

of the response calculating function f , this framework

resets the memory used by the function and allocates

memory in a fixed manner. In this way, it prevents

backdoors from taking advantage of global or internal

states. As a result, the computation function is pure

and thus T2a-type backdoors are eliminated.

8



3) Backdoor usability testing: For T2b-type back-

doors, we use collision testing to verify whether the

response computing function f is consistent and has no

special characteristics such as high collision probability.

According to theorem and corollary in Section IV-B,

our testing method is straightforward. We compute the

upper bound of a backdoor usability. If the upper bound

is lower than a practical threshold, we assert that there

is no usable backdoor in the login module.

As long as the f can only receive challenge cha and

password pw, both of which are random to malicious

developers or testers, we randomly generate plenty of

cha, and for each cha, randomly generate plenty of

pw, to check the weak collision probability of the

response computing function. For different cha or pw,

the response weak collision probability should be small

enough to prevent a malicious developer from authen-

ticating to the system. If the probability is abnormally

high, we detect the backdoor. For example, if the login

program has the backdoor shown in Figure 2, when

the challenge is fixed, we will get 1/10 of the response

are the inversed challenge, although we feed different

passwords.

IV. SECURITY ANALYSIS

In this section, we define response-computable au-

thentication (RCA) and usable RCA backdoors. We

then analyze the existence and usability of backdoors in

our framework. Finally, we discuss the countermeasure

against possible backdoors.

A. RCA backdoors definition

Definition 1 (Response-Computable Authentication).
A two-party (e.g. client and server) authentication is

called a response-computable authentication (RCA) if

all the following statements hold:

• The client computes (or chooses) a response and

then sends to the server.

• The server has a computation component that com-

putes an expected response independently.

• Whether the authentication passes or not depends

on whether the user response equals to the expected

response.

In brief, an RCA is an authentication with a compute-
then-compare logic. Specifically, the server and the

client compute the response separately. The server com-

pares the two values to decide whether to authenticate

the user.

The server’s computation component of an RCA can

be modeled as a computation function f . We present

the details in the following definition.

Definition 2 (Computation Function). A computation

function is a binary function, which reads in two argu-

ments that cannot be controlled by attackers, i.e., a ran-

domly generated challenge cha and a secret password

pw from the password database, and then outputs an

expected response Response′ for further comparison.

In our framework, the computation component re-

sides in the sandbox NaPu, and thus the computation

function f is a pure function, i.e. given the same

arguments cha and pw, f returns the same result and

does not cause any side effects.

Definition 3 (Usable RCA Backdoor). Given an RCA

whose computation function is f , a RCA backdoor

exists in this RCA if and only if, there is a hidden

client-side response generation schema S such that

the attacker can login successfully with a probability

Pbackdoor. This backdoor is called a (S, Pbackdoor)-
backdoor. If Pbackdoor is higher than a predefined

threshold Pthreshold, it is called usable.

More specifically, the attacker can choose a special

(or any) id and waits for a special (or any) cha, and

then sends the response S(id, cha) to server, and finally

logins successfully with a probability

Pbackdoor = P (S(id, cha)==f(pw, cha)) ,

such that,

Pbackdoor ≥ Pthreshold,

where the pw is the corresponding secret password of

id.

The attacker is also the developer of the computation

function f , and he/she has some knowledge about f ,

such as f ’s algorithm or a hidden vulnerability in f ’s

implementation or a rarely executed execution path.

These knowledge can be combined into the attack

schema S. As a result, even though the attacker does

not know id’s corresponding pw, he/she can login

successfully with a probability (i.e. Pbackdoor) greater

than the probability (denoted as P id
guess) of guessing

the right password. Even worse, if the attacker can try

several login attempts in a short time, he/she can login

successfully much faster.

Deduction 1 (Probability of Successful Attacks in a
Login Session). In a classical login session, the user

is allowed to try several login attempts before he/she

is forbidden to login. Suppose the count of permitted

attempts in a login session is NL and the attacker can

login successfully with a probability Pbackdoor in each

attempt, the probability with which the attacker can

login successfully in the whole login session is

Ptotal = 1−(1− Pbackdoor)
NL

9



According to the Bernoulli inequality, we can in-

fer that: Ptotal ≤ Pbackdoor × NL. Especially, when

Pbackdoor � 1, the statement Ptotal ≈ Pbackdoor × NL

holds. As a result, if Pbackdoor and NL are big enough,

the attacker can easily login into the target system.

On the other hand, a practical secure login system

should make sure that Pbackdoor in each attempt is small

enough and the count of permitted attempts in a certain

time period is small.

B. Security analysis of our framework

1) Effectiveness on different types of backdoors:
(1) Type T1 backdoors: For T1 type back-

doors, the compute-then-compare logic is violated, e.g.,

through vulnerability exploiting. In our framework, the

login module is decomposed into several components,

e.g., the computation and comparison components. Be-

sides, the computation component is protected by the

sandbox NaPu which is robust against vulnerabilities,

and thus the control flow cannot be controlled by

attacker. Meanwhile, the comparison component is quite

simple (i.e. a compare statement) and can be enforced

easily. With this explicit comparison enforcing mecha-

nism, the compute-then-compare logic cannot be violat-

ed if the control flow reaches the computation module.

Moreover, other control-flow-integrity techniques can

be applied to ensure the computation module not be

bypassed. As a result, there are no T1 type backdoors

in our framework.

(2) Type T2a backdoors For T2a type backdoors, given

a certain input pw and cha, the output f(pw, cha) is

not deterministic, e.g. f outputs a predefined response

when a specific trigger condition (e.g. a specific date)

meets and outputs a normal response otherwise. In our

framework, f resides in a sandbox NaPu, and we use

global state isolation and internal state resetting to make

sure f is a pure function and thus deterministic. So,

there are no T2a type backdoors.

(3) Type T2b backdoors. However, in our framework,

even though the compute-then-compare logic is en-

forced and the computation function is deterministic,

backdoors of type T2b can still be active.

In this framework, attackers only know id, cha and

f ’s algorithm. Besides, f is a pure function, and its

result is used in an enforced comparison to make a

decision. In order to login successfully, attackers have

to provide a valid response matches the deterministic

expected response. More specifically, they must choose

a special (or any) id0 and wait for a special (or any)

cha0, and then send a response S(id0, cha0) to the

server to match the expected response f(pw, cha0)
generated by the server.

Fortunately, attackers know nothing about pw al-

though pw is determined by id chosen by attackers.

Ideally, if the outputs of f(pw, cha0) are completely

different for all pws (i.e. f ’s value space is uniform

distributed), the attacker-supplied response S(id0, cha0)
matches f(pw, cha0) only with a low probability of

1/M (let M be the count of possible passwords),

i.e. attackers can login successfully with a probability

of 1/M which equals to the negligible probability of

guessing id’s password.

However, the outputs of f(pw, cha0) may be same

for some different pws. In an extreme case, all outputs

are the same for all different pws. And then the attacker

can choose any password, and behaves like a legal user

to generate a response, and logins successfully. In other

words, there may be backdoors if f ’s value space is not

uniform distributed.

Unfortunately, the attacker knows f ’s algorithm, and

thus knows the image (i.e. the value space) of f . As

a result, S(id0, cha0) may match f(pw, cha0) with a

high probability and thus an usable backdoor exists. For

example, for a certain cha0, if half of the pws lead to a

same output f(pw, cha0) (denoted as res0, known by

attackers), the attacker can randomly choose an id and

waits for the special cha0 sent from the server, then

he/she sends res0 back to the server, and finally logins

successfully with a probability equals to 1/2. Obviously,

this is an usable backdoor.

But these backdoors’ usability can be measured and

controlled as following, so they can hardly be used

practically.
2) Usability of backdoors in our framework:

Premise 1. Before discussing the usability of backdoors

in our framework, we declared some premises which are

enforced by the framework or usually acceptable.

• The attacker knows every possible valid id.

• For any id, the attacker knows nothing about its

corresponding pw, i.e. the pw is random.

• The attacker knows f ’s algorithm.

• The computation function f is pure, and thus its

output is deterministic when given inputs pw and

cha.

• The computation-then-compare logic cannot be vi-

olated.

• From the cha, figuring out the pw is impossible

(i.e. they are independent).

Definition 4 (Collision probability of a computation
function). Given a pure response computation function

f(pw, cha), suppose there are M possible passwords.

• For a certain cha0, let {res1, res2, ..., resk} be

the image of f(pw, cha0). Besides, there are

Mi passwords which may cause f(pw, cha0) =
resi, where i = 1, 2, ..., k and M1 + M2 +
... + Mk = M . Then we define P cha0

col =
max{M1,M2, ...,Mk}/M .

10



• For all possible cha0, we denote the maximum

P cha0

col as Pmax
col . This probability is called the

collision probability of the computation function

f .

Theorem 1 (Usability of backdoors in our frame-
work). Given any RCA implemented in our framework,
suppose its computation function is f whose collision
probability is Pmax

col , then any T2b-backdoor attacker-
s can only login successfully with a probability not
greater than the collision probability, i.e. Pbackdoor ≤
Pmax
col .

The proof to Theorem 1 is listed in the appendix A.

C. Countermeasures against T2b backdoors

As discussed earlier, only T2b type backdoors may

exist in our framework. More specifically, if and only

if the computation function f ’s value space is not uni-

formly distributed, backdoors exist in our framework.

According to the Theorem 1, T2b backdoor attackers

can only login successfully in our framework with a

maximum probability of Pmax
col . For any computation

function f , if the corresponding Pmax
col is assured to

be smaller than the threshold Pthreshold, then we can

conclude there is no usable backdoors in our framework.

In our framework, a collision testing is made to

evaluate the computation function’s collision probability

Pmax
col . If this probability is too high, i.e. higher than the

threshold, a backdoor alert is triggered.

However, figuring out the exact collision probability

of a computation function is computationally hard.

According to the Definition 4, in order to compute the

collision probability, P cha
col should be computed for all

cha. Further, for a given cha0, all possible pw should

be traversed to compute P cha0

col . Notice that the counts

of cha and pw are both huge, and thus it is hard to

compute the exact collision probability of a computation

function.

Alternately, we sample parts of chas and parts of

pws and then compute a similar collision probability

to emulate the exact collision probability. More specif-

ically, some random challenges {cha1, cha2, ..., chac}
are chosen first. And then for any chosen chai, some

random pws are selected to test f , and thus P chai

col is

computed. Then the collision probability is computed,

i.e. Pmax
col = max{P cha1

col , P cha2

col , ..., P chac

col }. If the

sampled collision probability is larger than the backdoor

threshold, the computation function is regarded vulner-

able and should be eliminated before being deployed.

Although this sampling and testing scheme cannot

deduce the exact collision probability of a computation

function, it can exactly model attackers’ capabilities. In

other words, if attackers find a usable backdoor in the

computation function, security testers in our framework

is likely to get a Pmax
col higher than the threshold.

Notice that passwords in the real database only cover

a small part of all possible passwords. Besides, pass-

words are random. And thus, even though the attacker

knows f ’s algorithm, he/she does not know the exact

distribution of f ’s value space for passwords in the real

database. For example, if the outputs of f are same

(denoted as res0) for half of all possible passwords,

but all passwords in the database are not in this half,

then the attacker can never login successfully if he/she

still chooses res0 as the response. So, attackers can not

predicate which response are more likely to be correct

because the password database is small and random.

On the other hand, the security testers in our frame-

work randomly choose some passwords to evaluate

Pmax
col . This randomly sampling can model the real

password databases.

As a result, the attackers have no advantage over the

testers. And thus, with the help of our thorough and

random collision testing, computation functions with a

high collision probability can be filtered out or no usable

backdoors exist.

V. IMPLEMENTATION

In this section, we present the implementation of

our approach, with focuses on NaPu — the Native

Pure-function enforcing sandbox. We build NaPu based

on Google’s Native Client (NaCl) [37]. NaPu provides

vulnerability isolation inherited from NaCl.

Vulnerability isolation. NaCl consists of two layers

of sandbox. The inner sandbox makes a secure subdo-

main in the native process. Besides applying software

isolation [37] and disabling the unsafe machine instruc-

tions, it also enforces structural rules and alignment to

make disassembling reliable, and constrains references

in both instruction and data memory by segmenting.

The outer sandbox uses secure interfaces to control

interactions between modules and the system.

Even though there were vulnerabilities in the code in

the sandbox, the effect will be contained in the sandbox

and cannot be used to exploit the system.

Pure function enforcing. To ensure that the response

computing function f running in NaPu is pure, we

need to eliminate the non-deterministic source of f by

isolating the global states, resetting the internal states,

and making sure it has no side effects. Meanwhile, all

the instructions allowed in NaPu are deterministic.

Global state isolation. NaCl provides a white-list

mechanism to confine the native code’s accesses to

system calls. Those trusted system calls include file

operations, timers, socket calls, threading operations,

debug mode calls and sound/graphic interfaces. Those

system calls can access global states and use them as

11



the trigger to generate a special response, which are not

necessary for normal response computing. Therefore,

they are all prohibited in NaPu, except the system

calls related to memory allocation. Specifically, NaPu

only provides pure function interfaces and disallows the

native code to invoke the following system calls:

• The system calls that can perform file operations

(e.g., open , read, write).

• The system calls that can obtain system timers

(e.g., gettimeofday, clock, nanosleep).

• The system calls that can make network accesses

(e.g., accept, connect, recvmsg).

• The system calls that can obtain system informa-

tion (e.g., sysconf, getpid).

• Others (threading related, sound/graphic related,

debug related).

In addition, NaPu disables the following x86 instruc-

tions in the native code of f through the instruction

validator, so that NaPu makes sure that all the allowed

instructions are deterministic.

• Instructions that can obtain hardware identification

configuration (e.g., CPUID) ;

• Instructions that can obtain hardware performance

information (e.g., RDPMC, RDTSC, and RDTSCP);

• Instructions that can access I/O ports (e.g.,

IN/OUT).

Internal state reset. The backdoor may use a local

variable as the trigger, such as the example shown in

Figure 2. NaPu uses the memory wiper to resets the

internal states each time to call f , to make sure there

is no variable recording internal states.

Even though there are only memory allocation system

calls left in NaPu, the allocated memory or the memory

address can be used as triggers when there is no

special handling. For instance, an attacker may initiate

a number of login requests in a short time, since each

login authentication will be performed in one sandbox,

the memory address for each sandbox will be different

for each login request. Thus, the attacker can break the

pure function requirement. To deal with such situations,

NaPu uses the deterministic memory allocator. The

allocator fills all new allocated memory buffers with

zeros to eliminate the uncertainty in allocated memory

blocks. Further, for each request, NaPu will start a

new segment start from address 0x10000, and for each

function executed in NaPu, its memory address is a fixed

value. Finally, any instruction that can get the value of

segment registers is disallowed.

Memory exception handling. Memory allocation may

fail. To deal with this situation, one solution is to

suspend the execution until free memory appears. But

this method is easy to create a deadlock, hence it is

not suitable for most pure computing scenarios. Another

Mechanism Response computing function f
PLAIN Base64(pw)
CRAM-MD5 Base64(HMACMD5(pw, nonce))
HOTP Truncate(HMACSHA-1(pw,C))
TOTP Truncate(HMACSHA-1(pw, time))

Table I
RESPONSE-COMPUTATION FUNCTION f OF DIFFERENT

AUTHENTICATION MECHANISMS.

solution is to return an error. However, if this error

information is returned directly to the inner function

in NaPu, the inner function can generate different val-

ues according to the allocation results, which violates

the pure function characteristics. NaPu takes a simple

method that the outermost function in NaPu will be

stopped as failure and its caller will get an exception if

any memory allocation fails. The framework will catch

this exception and directly reject the login attempt.

Through global state isolation and internal state reset,

the only inputs of response-computation function are

the challenge and the password. Meanwhile, all the

instructions allowed by NaPu are all deterministic. Then

for the same cha and pw pairs, the return values of f
will be identical, which meets the requirements of the

theorems in Section IV-B.

NaPu and DeterministicExecution [1] are parallel

projects that are independent to each other. The Deter-

ministicExecution is a subproject of NaCl to disabling

sources of non-determinism for guest code, while Na-

Pu’s scenario is more succinct because response com-

puting function usually only takes arithmetic operations.

VI. EVALUATION

In this section, we describe our results in porting

several widely used RCA modules into our framework,

measuring their performance overhead in NaPu, and

checking whether they are backdoor-free. We also did

experiments to show the ability to detect real-world

backdoors. In our experiments, NaPu is deployed in

the authentication module, and the authentication is per-

formed on the server side. The performance evaluation

was carried out on a Linux Ubuntu server 10.10 with

Intel Core2 Duo CPU at 2.40GHz. Because the response

computing function f is pure, we can test its property

in parallel when needed.

We evaluated NaPu by porting response computing

functions of different RCA mechanisms into our frame-

work. These RCA mechanisms are from widely adopted

authentication layer SASL and OTP, shown in table I.

• In PLAIN, the challenge is a simple query for

login, and the response is the password encoded

by base64. Hence f = Base64(pw).

• In CRAM-MD5, the challenge is a base64 encoded

nonce. When receiving the challenge, the user de-

12



Mechanism pw Original NaPu Runtime
length(bit) Time(μs) Time(μs) Overhead

PLAIN 128 0.0923 0.0917 -0.65%
CRAM-MD5 128 1.8121 1.8588 2.57%
HOTP 128 3.5615 4.1756 17.24%
TOTP 128 3.6286 4.1652 14.78%
PLAIN 256 0.1704 0.1555 -8.74%
CRAM-MD5 256 1.8962 1.9342 2.00%
HOTP 256 3.6748 4.2393 15.36%
TOTP 256 3.6512 4.2267 15.76%

Table II
RUNTIME OVERHEAD OF NAPU.

codes it to get the nonce, then hash it using HMAC

with the user’s password pw as the secret key.

Therefore f = Base64(HMAC(pw, nonce)).
• In HOTP, the challenge is an increasing counter,

usually 8-byte. We denote it as C. The re-

sponse is a truncated value on HMAC of

the key pw and the counter C. Therefore

f=Truncate(HMACSHA-1(pw,C)). Here Truncate
represents the function that converts an HMAC-

SHA-1 value into an HOTP value which usually a

6-digit number.

• In TOTP, the challenge is an anticipated time,

the response is a truncated value on HMAC of

the key pw and the time-stamp time. There-

fore f=Truncate(HMACSHA-1(pw, time)). Here

Truncate represents the function that converts an

HMAC-SHA-1 value into an TOTP value which

usually a 6-digit number.

A. Performance overhead

We compared the performance of these response-

computation functions ported in NaPu with its original

implementation. For each function, we measured 107

times for both 128-bit pw and 256bit pw and then av-

eraged the time measurements. These functions seldom

use heavy memory operations, so NaPu only introduces

initial reset and more API/OPCode restrictions over

NaCl, and the performance overhead is about the same

as NaCl.

The results, shown in Table II, show that the max-

imum performance overhead is less than 20%, and

the single processing time is less than 5 μs, which is

acceptable in real login modules. The interesting part

is in PLAIN mechanism, the f in NaPu is faster than

native code. The reason is that NaPu uses 32-bytes

block alignment which is more suitable for Base64

transformation.

B. Backdoor usability testing

1) Ported login modules: We conducted experiments

to measure the weak collision probability of response

computing functions in these ported login modules.

We set the backdoor usability threshold Pthres as

0.01%, which means that an attacker can get no more

than 1 successful login in 10,000 attempts.

We had different test cases for different scenarios of

cha. We designed these experiments as the following:

• For PLAIN, the challenge is not involved in the

response computing. We generated 105 random

passwords as the input of f , and got 105 responded

values. The password was 128 bit and the response

was 144 bit. The weak collision probability (i.e.,

the upper bound of Pbackdoor) was almost 0.

• For CRAM-MD5, the challenge is random. We

randomly generate 106 cha. For each cha, we

generated 105 random pw to test its Pcol, and then

got their maximum number as Pmax
col .

• For TOTP, the challenge is predictable. We as-

sumed cha is increased every 30 seconds and we

generated all possible cha for the next ten years,

which are 10 million different cha; For each cha,

we randomly generated 105 pw to test its Pcol, and

then got their maximum number as Pmax
col .

• For HOTP, the challenge is predictable. We as-

sumed the counter is increased 100 times at most

every day, which means that a person normally

logins less than 100 times per day. We generated

365000 cha for the next 10 years. For each cha,

we randomly generated 105 pw to test its Pcol, and

then get their maximum number as Pmax
col .

All passwords used in experiments are 128-bit long.

The output response length is from RFC standard. All of

these tests are completed within a week using 10 severs

in parallel. The results, shown in Table III, present that

all Pmax
col are less than 10−4, so Pbackdoor is less than

Pthres = 0.01%. So we can assert that there are no usable

backdoors in these authentication mechanisms.
2) Volunteer-created backdoor: To test the frame-

work’s ability to detect the backdoor, we asked some

student volunteers who study computer science to cre-

ate different backdoors. Because most of the existing

login backdoors are using pre-set special credential

to circumvent the authentication, which is naturally

eliminated in our framework, for simplicity, we limited

the scope of Type-2 backdoors so that the response

should be compared explicitly. The students can use

different trigger conditions or modify hash functions but

the challenges were randomly generated.

We used our testing strategy to test their backdoor

probability. The framework caught all of these back-

doors. There were two representative backdoors in these

experiments. Both of them can reach a very high Pmax
col .

One is 100% and the other is 67%.

We asked the backdoor creators to explain their

methods. One used a special challenge as the trigger. He

first changed the challenge to bit form. If the fourth bit

13



Mechanism pw cha res cha num pw num per cha Pmax
col Time

len(bit) len(bit) len(bit) (∗103) (/105) (hours)

PLAIN 128 None 144 None 105 0 ≈ 0

TOTP 128 64 20 10000 105 2 1065
HOTP 128 64 20 365 105 2 30

CRAM-MD5 128 64 128 1000 105 0 97

Table III
COLLISION TESTING OF PORTED RESPONSE COMPUTING FUNCTION f .

of the challenge is 1 and the fifth bit is 0, then f outputs

a special response. Then he tried several times and

waited for an appropriate challenge to log in. Basically

he had 1/4 probability to log in successfully. During our

testing, we easily found this backdoor because the Pmax
col

is 100%.

In another case, the hash function was wrapped to

be insecure. The creator first computed the response as

normal. Then he mapped those response value to a small

space with high collision probability to some special

responses, which means f() compresses the image of a

secure hash function. Through the standard testing, we

discovered this malicious response computing function

with Pmax
col = 67%.

VII. DISCUSSION AND LIMITATION

Since either malicious developers or outsourced con-

tractors have chances to instrument backdoors, back-

doors are a constant threat for large software system-

s [19]. Advanced attackers can even plant backdoors

into cryptography algorithms which are even more d-

ifficult to discover. For reference, even for well-known

algorithms such as DES and MD5, their weaknesses

were found after they had been used widely for many

years.

Instead of trying to detect all possible backdoors in

software, this paper focuses on preventing usable back-

doors in response-computable login modules, which was

widely used in many authentication systems.

In our login framework, we need several trusted

modules (see Section IV). In fact, these trusted modules

contain very simple logic, such as file read and socket

communications. In general, operating systems directly

implement these functionalities. In addition, we also

need a trusted random number generator, which is also a

basic kind of system service (such as /dev/urandom
in Linux systems).

Thus, unless the backdoor creator can take control

of operating systems, we think existing mechanisms

such as manual code review and program verification

approaches can ensure that the assistant modules are

trusted. Furthermore, techniques such as CFI/SFI can

be used to prevent an attacker from bypassing the

authentication procedure. On the other hand, for the en-

terprises which publish user-space software, malicious

programmers hardly compromise the OS kernel. How

to protect OS kernel is out of the scope of this paper.

In real-world systems there may be other require-

ments. For example, a user is only allowed to login

between 8am and 6pm or only from a specific set of

IP addresses. The system can enforce these constraints

before reading the password from the database outside

NaPu, so that the pure function in NaPu only handles

password and challenge.

This paper assumes a uniform probability distribution

for the testing selection space for the password. In the

future, approaches of more adaptive distributions [10]

can be used.

A possible attack is timing-based attack [7] that used

to guess passwords. However, from the table II we can

see that the time taken by computation functions is so

little that its variation can hardly be measured exter-

nally. If necessary, intentional delays can be inserted

to prevent this attack. In our framework the attacker

cannot have any other information to launch a side-

channel attack.

VIII. RELATED WORK

Backdoor detection based on network traffic be-
havior. To detect backdoors which can be triggered

remotely, many studies focus on analyzing network

traffics based on network intrusion detection systems

(NIDS). Zhang and Paxson [39] developed a set of

algorithms that exploit many novel characteristics such

as the frequency of small packets, the size of pack-

ets, connection directionality and keystroke times to

detect machine-driven interactive backdoors. Based on

the work [39], Gonzalez et al. [17] proposed traffic

sampling and filtering methods and further implement-

ed a backdoor detector. Besides traffic characteristics,

Horng et al. [20] adopted the Dynamic Link Library

(DLL) injection technique to record all DLLs used

by the target application, and took advantage of these

extra characteristics to determine whether the target

application has backdoors.

These methods prevent certain type of backdoors

that can cause anomalous network behaviors. However,

these methods can be evaded if backdoors do not cause

anomalous network behaviors. For example, during a

normal login connection, an attacker directly uses a

14



backdoor username or super password to log in to a

system.

Backdoor detection by program analysis. Natural-

ly, many malware detection or analysis methods can

be also applied to backdoor detection. For example,

to detect hidden malware time-bombs, Crandall et al.

[13] implemented a temporal search technique that runs

virtual machines at slightly different rates of time.

To explore malware code space, Wilhelm et al. [36]

used a forced-execution approach to force a driver to run

different paths. Moser et al. [23] and Brumley et al. [9]

independently implemented similar symbolic-execution-

based malware analysis systems to explore different

paths in malware. Comparetti et al. [12] proposed a

graph-match-based solution to determine the malicious

functionalities in malware samples.

These techniques can be used to detect certain type-

s of backdoors. However, there are also many anti-

analysis techniques, such as code obfuscation [11], [22],

[25] and code encryption [28], [38]. Instead of detecting

backdoors, we focus on nullifying the effects of a

backdoor in RCA login frameworks.

Backdoor prevention. Wysopal [29] gave an

overview on different backdoor mechanisms and ma-

licious indicators, and suggested using static analysis to

identify backdoor indicators such as static variables that

look like hashes or cryptographic keys, to prevent the

pre-owned special credentials.

Source code review cannot detect the backdoors that

are instrumented at the binary level. Wheeler [35]

proposed a diverse double-compiling technique that

compares the untrusted binary with the one generated by

another trusted compiler. In addition, syntax-based [15]

or semantics-based [16] binary comparison techniques

can also be used to statically identify the equivalence of

binaries. The deviation detection method in [8] can dy-

namically identify the equivalence of execution traces.

These studies could alleviate the backdoor problems

caused by malicious compilers.

Hardware backdoor. In recent years, hardware

backdoors became a hot topic [18], [31], [33], [34]. To

defend against malicious hardware, Hicks et al. [18]

proposed BlueChip, a hybrid hardware/software ap-

proach. BlueChip identifies unused circuits during the

verification tests, and uses trusted software to emulate

the unused circuits. Thus, even if the unused circuits

contain backdoor logic, they cannot be activated. This

method could be applied to isolate certain types of

backdoors in software. For example, if some pieces

of code in a login module are not tested, we can

separate them from the login module. However, there

are many flexible backdoor implementation methods.

Simple replacing unused code in login modules cannot

address the issue.

Waksman et al. [33] proposed a method to make the

backdoor intractable to attackers by scrambling the in-

puts. Due to the input data randomization, backdoors are

hardly controlled by attackers. Preventing the untrusted

login modules from receiving expected inputs is very

useful to defend backdoors. However, in login protocols,

many data, such as the challenge values, responses, can-

not be scrambled. Thus the method cannot be directly

used in login protocols.

IX. CONCLUSIONS

Response-computable authentication (RCA) is a two

party authentication model widely adopted by many lo-

gin systems. Unfortunately, these systems have suffered

from the threats of backdoors. A malicious developer

could leave backdoors in source code, through mali-

cious compilers, by planting delicate vulnerabilities, or

even through weak cryptography algorithms. Traditional

technologies have difficulty in completely eliminating

backdoors from login systems.

In this paper, we propose a framework for RCA

systems to ensure that no usable backdoor exists. And

we prove theorems about the upper bound of poten-

tial backdoor usability. Our framework splits the R-

CA model into one response-computation function and

some assistant logic. These assistant logic are fairly

simple and can be checked manually. The response-

computation function is usually complicated and may

have backdoors. We put this function into NaPu, a Na-

tive pure-function-enforcing sandbox. NaPu can prevent

an attacker from triggering backdoors via vulnerability

and ensure the response computing function pure. We

prove theorems to give the upper bound of backdoor

usability in a login module, which forms a theoretical

basis of our testing methods. Through the testing, either

we can detect the possible backdoor or we can ensure

the backdoor cannot be used by its creator. The idea of

enforcing functional purity could be used for multiple

applications beyond login modules, such as e-voting

machines [14], [27], [30]. How to extend the pure

function characteristic to enhance program security is

our future work.

We ported several popular login modules into this

framework and verified that they are backdoor-free.

We also detected some real backdoors in login module

via probability testing. Our performance measurement

showed acceptable overhead. The result of automatic

standard tests shows that the framework can be applied

to real login systems to ensure no practically usable

backdoor.

ACKNOWLEDGMENTS

We are grateful to David Wagner, Shuo Chen, Prateek

Saxena, and the anonymous reviewers for their insight-

15



ful comments and suggestions. This research was sup-

ported in part by National Natural Science Foundation

of China (Grant No. 61003216), National University of

Singapore under NUS Young Investigator Award R-252-

000-378-101, and the Office of Naval Research under

MURI Grant No. N000140911081.

REFERENCES

[1] NaCl project:Disabling sources of non-determinism for
guest code. http://code.google.com/p/nativeclient/wiki/
DeterministicExecution.

[2] ProFTPD Backdoor Unauthorized Access Vulnerability.
http://www.securityfocus.com/bid/45150.

[3] RSA SecurID Two-factor Authentication. http://www.
rsa.com/node.aspx?id=1156.

[4] TOTP: Time-based One-time Password Algorithm. http:
//tools.ietf.org/html/draft-mraihi-totp-timebased-08.

[5] Back Door in Commercial Shopping Cart. 2000.
http://web.nvd.nist.gov/view/vuln/detail?vulnId=
CVE-2000-252.

[6] S. M. Bellovin and M. Merritt. Encrypted key exchange:
Password-based protocols secure against dictionary at-
tacks. In IEEE SYMPOSIUM ON RESEARCH IN SE-
CURITY AND PRIVACY, pages 72–84, 1992.

[7] D. Brumley and D. Boneh. Remote timing attacks are
practical. In Proceedings of the 12th conference on
USENIX Security Symposium - Volume 12, pages 1–1,
Berkeley, CA, USA, 2003. USENIX Association.

[8] D. Brumley, J. Caballero, Z. Liang, J. Newsome, and
D. Song. Towards automatic discovery of deviations
in binary implementations with applications to error
detection and fingerprint generation. In Proceedings of
USENIX Security Symposium, Aug. 2007.

[9] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
P. Poosankam, D. Song, and H. Yin. Automatical-
ly identifying trigger-based behavior in malware. In
Book chapter in ”Botnet Analysis and Defense”, Editors
Wenke Lee et. al., pages 65–88. Springer US, 2008.

[10] C. Castelluccia, M. Durmuth, and D. Perito. Adaptive
password-strength meters from markov models. In
Proceeding of the 19th Annual Network and Distributed
System Security Symposium (NDSS’12), 2012.

[11] C. Collberg, C. Thomborson, and D. Low. Manufac-
turing cheap, resilient, and stealthy opaque constructs.
In POPL ’98: Proceedings of the 25th ACM SIGPLAN-
SIGACT symposium on Principles of programming lan-
guages, 1998.

[12] P. M. Comparetti, G. Salvaneschi, E. Kirda, C. Kol-
bitsch, C. Kruegel, and S. Zanero. Identifying Dormant
Functionality in Malware Programs. In 2010 IEEE
Symposium on Security and Privacy, pages 61–76, 2010.

[13] J. R. Crandall, G. Wassermann, D. A. S. de Oliveira,
Z. Su, S. F. Wu, and F. T. Chong. Temporal search:
detecting hidden malware timebombs with virtual ma-
chines. In Proceedings of the 12th international con-
ference on Architectural support for programming lan-
guages and operating systems, ASPLOS-XII, pages 25–
36, New York, NY, USA, 2006. ACM.

[14] M. Finifter, A. Mettler, N. Sastry, and D. Wagner.
Verifiable functional purity in java. Proceedings of the
15th ACM conference on Computer and communications
security CCS 08, page 161, 2008.

[15] H. Flake. Structural comparison of executable objects.
In Proceedings of Detection of Intrusions and Malware
& Vulnerability Assessment (DIMVA), 2004.

[16] D. Gao, M. K. Reiter, and D. Song. BinHunt: Automati-
cally Finding Semantic Differences in Binary Programs.
In Proceedings of the International Conference on Infor-
mation and Communications Security, pages 238–255.
Springer-Verlag, 2008.

[17] J. Gonzalez and V. Paxson. Enhancing Network Intrusion
Detection with Integrated Sampling and Filtering. In
Recent Advances in Intrusion Detection (RAID), volume
4219 of Lecture Notes in Computer Science, pages 272–
289. Springer Berlin / Heidelberg, 2006.

[18] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin,
and J. M. Smith. Overcoming an Untrusted Computing
Base: Detecting and Removing Malicious Hardware Au-
tomatically. In 2010 IEEE Symposium on Security and
Privacy (SP), pages 159–172, 2010.

[19] L. Ho and A. Atkins. Security of software outsourcing
in military and government agencies. In Proceedings of
IADIS International Conference on WWW/Internet 2005,
pages 347–355, 2005.

[20] S.-J. Horng, M.-Y. Su, and J.-G. Tsai. A dynamic back-
door detection system based on dynamic link libraries.
International Journal of Business and Systems Research,
2(3):244–257, 2008.

[21] J. Klensin, R. Catoe, and P. Krumviede. IMAP/POP
AUTHorize Extension for Simple Challenge/Response.
RFC 2195, Internet Engineering Task Force, Sept. 1997.

[22] C. Linn and S. Debray. Obfuscation of executable code
to improve resistance to static disassembly. In CCS ’03:
Proceedings of the 10th ACM conference on Computer
and communications security, 2003.

[23] A. Moser, C. Kruegel, and E. Kirda. Exploring Multiple
Execution Paths for Malware Analysis. In SP ’07. IEEE
Symposium on Security and Privacy, pages 231–245,
2007.

[24] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache,
and O. Ranen. HOTP: An HMAC-Based One-Time
Password Algorithm. RFC 4226, Internet Engineering
Task Force, Dec. 2005.

[25] I. V. Popov, S. K. Debray, and G. R. Andrews. Binary
obfuscation using signals. In SS’07: Proceedings of
16th USENIX Security Symposium on USENIX Security
Symposium, Berkeley, CA, USA, 2007.

[26] A. Salomaa. Public-Key Cryptography. Springer, 1996.
ISBN 3-540-61356-0.

[27] N. Sastry, T. Kohno, and D. Wagner. Designing voting
machines for verification. In Proceedings of the 15th
conference on USENIX Security Symposium - Volume
15, Berkeley, CA, USA, 2006. USENIX Association.

[28] M. Sharif, A. Lanzi, J. Giffin, and W. Lee. Impeding
malware analysis using conditional code obfuscation. In
Proceedings of the 15th Annual Network and Distributed
System Security Symposium, San Diego, CA, February
2008.

[29] T. Shields and C. Wysopal. Detecting Certified Pre-
owned Software. In BlackHat-Europe, 2009.

[30] C. Sturton, S. Jha, S. A. Seshia, and D. Wagner. On
voting machine design for verification and testability. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 463–476,
New York, NY, USA, 2009. ACM.

16



[31] C. Sturton, D. Wagner, and S. T. King. Defeating UCI:
Building Stealthy and Malicious Hardware. In 32th IEEE
Symposium on Security and Privacy, 2011.

[32] K. Thompson. Reflections on trusting trust. Communi-
cations of the ACM, 27(8):761–763, 1984.

[33] A. Waksman. Silencing Hardware Backdoors. In 32nd
IEEE Symposium on Security and Privacy, 2011.

[34] A. Waksman and S. Sethumadhavan. Tamper Evident
Microprocessors. In IEEE Symposium on Security and
Privacy, pages 173–188, 2010.

[35] D. A. Wheeler. Countering Trusting Trust through
Diverse Double-Compiling. In 21st Annual Comput-
er Security Applications Conference, Tucson, Arizona,
2005.

[36] J. Wilhelm and T. cker Chiueh. A forced sampled
execution approach to kernel rootkit identification. In
10th International Symposium on Recent Advances in
Intrusion Detection (RAID’07), pages 219–235, 2007.

[37] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar.
Native Client: A Sandbox for Portable, Untrusted x86
Native Code. In 30th IEEE Symposium on Security and
Privacy, pages 79–93, 2009.

[38] A. Young and M. Yung. Cryptovirology: Extortion-
based security threats and countermeasures. In SP ’96:
Proceedings of the 1996 IEEE Symposium on Security
and Privacy, page 129, Washington, DC, USA, 1996.
IEEE Computer Society.

[39] Y. Zhang and V. Paxson. Detecting backdoors. In
Proceedings of the 9th conference on USENIX Security
Symposium - Volume 9, page 12, Denver, Colorado,
2000. USENIX Association.

APPENDIX

Theorem 1 (Usability of backdoors in our frame-
work) Given any RCA implemented in our framework,
suppose its computation function is f() whose collision
probability is Pmax

col , then any T2b-backdoor attacker-
s can only login successfully with a probability not
greater than the collision probability, i.e. Pbackdoor ≤
Pmax
col .

Proof: Assume there is a backdoor (S0, Pbackdoor)
in the RCA implemented in our framework such that

Pbackdoor > Pmax
col , i.e. there is a client-side response

generation schema S0 such that the generated response

matches the expected response with a probability higher

than Pmax
col .

More specifically, the backdoor attacker can choose

a special (or any) id0 and wait for a special (or any)

cha0, then sends back S0(id0, cha0) to the server for

further comparison. Finally, the server-side comparison

passes with a probability higher than Pmax
col . In other

words, the following statement holds:

Pbackdoor = P (S0(id0, cha0)==f(pw, cha0))
> Pmax

col
(1)

for a certain S0, id0 and cha0.

On the other hand, for any response generation

schema S′ used by the attacker, for any id′ and cha′

chosen by this schema, the attacker can login success-

fully with a probability

P (S′, id′, cha′) = P (S′(id′, cha′)==f(pw, cha′)) .

Let {res1, res2, ..., resk} be the image of

f(pw, cha′), and M is the count of all possible

pws. Besides, there are Mi passwords which may

cause f(pw, cha′) equals to resi, where i = 1, 2, ..., k
and M1 + M2 + ... + Mk = M . Then, there are two

cases:

Case 1. The client-supplied response S′(id′, cha′)
does not exist in the set {res1, res2, ..., resk}, i.e. there

is no i such that resi = S′(id′, cha′). As a result,

P (S′, id′, cha′) = P (S′(id′, cha′)==f(pw, cha′))
= 0 ≤ Pmax

col

Case 2. The client-supplied response S′(id′, cha′)
exists in the set {res1, res2, ..., resk}, i.e. there is an

i such that resi = S′(id′, cha′). Besides, according to

the Premise 1, pw is random. As a result,

P (S′, id′, cha′) = P (S′(id′, cha′)==f(pw, cha′))
= P (resi==f(pw, cha′))
= Mi

M ≤ max{M1,M2,...,Mk}
M

= P cha′
col ≤ Pmax

col

In a word, the following statement holds:

P (S′, id′, cha′) = P (S′(id′, cha′)==f(pw, cha′))
≤ Pmax

col
(2)

for any S′, id′ and cha′.
As a result, the Equation 1 and 2 contradict. So,

the assumption cannot be true, i.e. there is no backdoor

such that Pbackdoor > Pmax
col . And thus, the theorem is

correct.

17


