
Poster: Flex-P: Flexible Android Permissions
Kurt Mueller (student) and Kevin Butler (faculty)

Department of Computer and Information Science
University of Oregon

Eugene, Oregon 97403-1202
Email: {kurtm,butler}@cs.uoregon.edu

Abstract—The Android mobile operating system and its appli-
cation store, the Android Market, are growing rapidly. Because
Google does not curate the Market, the presence and impact of
malware in the Market are also growing, and management of
device security is left to individual users who are faced with an
all-or-nothing decision when installing an app from the Market:
either install the app and grant it all the permissions it requests,
forever, or cancel the installation. To provide more control to
users over the permissions granted to applications, we present
Flex-P, a set of additions and modifications to the Android
operating system for managing application permissions at install
time and at runtime.

I. INTRODUCTION

The Android mobile operating system has gained tremen-
dous market share since its introduction in 2006, and in
early 2011 it surpassed Apple’s iOS and RIM’s BlackBerry
platforms to become the most popular smartphone platform
in the United States[3]. One component of its growth and
success is the Android Market, which makes 150,000 applica-
tions available to Android users[2] directly from their mobile
devices, and through the Android Market website.

While the Market has been a boon to both Android users
and legitimate application developers, it has also provided a
new avenue for malware authors to distribute their goods. In
contrast to Apple’s iTunes App Store, in which submitted
applications are individually screened by Apple staff before
publication to ensure compliance with App Store rules and to
prevent malicious apps from being distributed, there is no pre-
publication curation of apps in the Android Market. Programs
have been removed from the Market by Google after reports
of bad behavior from users[4], though at that point damage
may have already occurred.

The permissions system built into the Android OS partially
addresses this issue by informing users at the time of applica-
tion installation of the permissions that an application may use
during the course of its normal operation. In order to complete
the installation, the user must explicitly grant to the application
the permissions it has requested; if the user does not agree to
grant such permissions, canceling the application installation
is the only option.

Figure 1 shows the permissions request screen displayed
during installation of a popular wallpaper/background app
from the Android Market. Exactly why the application needs
“full Internet access” and the ability to “read contact data,
write contact data” is not apparent, and a potential user would
be justified in hesitating to install the app, or declining to do

Fig. 1. Stock Android Permissions Request

so entirely. If the user chooses to proceed with the installation
of such an app, they are irrevocably granting the app the rights
it has requested.

In this poster we present Flex-P, which stands for Flexible
Permissions. Flex-P is a set of modifications and additions to
the Android 2.2 operating system that gives users more fine-
grained control of granted permissions at app installation time,
as well as the ability to modify granted permissions at runtime
or at any time in the future through Android’s Settings feature.
Flex-P augments Android’s native authorization system to
enable checking of Flex-P data structures, and provides a
framework for future enhancements to the installation and app
management processes.

Previous efforts to improve the security of the Android
platform include Kirin[1] and Apex[5]. Kirin implements
install-time policy checking to prevent installation of applica-
tions that have potentially dangerous combinations of granted
permissions, but it does not allow users to change permissions.
Apex is similar to Flex-P in that it provides the ability for users
to grant or deny application permissions; however, it requires
modification of individual permissions (rather than permission
groups, as in Flex-P), and adds new restriction types to granted
permissions, such as limiting a permission to a certain number



Fig. 2. Flex-P Permissions Request

of uses per day. While this approach is powerful, it may be
overly burdensome to end users. We have attempted to strike a
manageable balance between control and usability with Flex-P.

II. FLEX-P APPROACH

A. Displaying permissions during installation

In Flex-P, we have modified the Android
PackageInstallerActivity and related classes
to display an application’s requested permissions (as
described in AndroidManifest.xml) with checkboxes
next to each permission group, allowing the user to grant or
deny individual groups of permissions. The modified installer
screen is shown in Figure 2, with some permission groups
granted and others denied. Flex-P stores user choices in its
own file format, overcoming limitations imposed by the static
AndroidManifest.xml file.

B. Modifying permissions after installation

It is possible with Flex-P to change the permissions
granted to an application after installation, at any arbitrary
time, through the built-in Android Settings / Applications
/ Manage Applications tool. Flex-P includes a modified
InstalledAppDetails class and supporting classes to
display the permissions for an application, with checkboxes
and a Save button, to enable editing and saving of permissions
settings.

C. Checking permissions at run-time

The stock Android authorization system simply checks
an application’s AndroidManifest.xml file at run-time
when the application tries to perform an activity that is
restricted. Since Flex-P stores enhanced information about
which permissions have been granted, it is necessary to also
check the application’s .flexp file during the authorization
process. The name of the permission being checked and the

UID of the requesting application are passed to Flex-P, and if
Flex-P has a record of the application in its permission store
then it checks the application’s .flexp record and returns
the granted boolean value contained therein.

III. EVALUATION

Performance of a stock Android installation was compared
with a modified, Flex-P-enabled installation. For the regular
Android installation, without Flex-P, the average startup time
over five trials was 106.8 seconds. With Flex-P installed, the
average startup time over five trials was 114.6 seconds. The
added overhead of initializing the Flex-P system and calling
the Flex-P static authorization method added 7.8 seconds, or
approximately 7.3%, to startup time. Given that this increase
includes the one-time Flex-P initialization sequence, it is likely
that ongoing Flex-P authorization checks after initialization
will have a smaller impact on performance. Subjectively, there
seems to be no difference in responsiveness between a Flex-P
enabled installation and one with stock Android authorization.

IV. CONCLUSION

In the absence of strict Android Market curation, like in
Apple’s App Store, it is up to users to manage the secu-
rity of their devices within the constraints established by
the mechanisms built in to the Android operating system.
Though Android provides an authorization system to keep
applications from overstepping their bounds, it is inflexible
both at app installation time and afterward. Flex-P provides
an initial framework for giving more control over application
permissions to users when they install applications, while
respecting the established goal of keeping the installation
interface simple and not confusing or overwhelming users
with choices. It also gives users the ability to change granted
permissions at any time after app installation. Future work
is focused on maintaining application robustness in the face
of revoked permissions, and on providing the ability for
application developers to specify some permissions as required
and others as optional while justifying their use of potentially
dangerous permissions.

REFERENCES

[1] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight
mobile phone application certification. In Proceedings of the 16th ACM
conference on Computer and communications security, CCS ’09, pages
235–245, New York, NY, USA, 2009. ACM.

[2] http://androinica.com/2011/02/android-has-150k-apps-350k-daily-
activations-and-more-notes-from-eric-schmidts-mwc keynote/. Android
has 150k apps, 350k daily activations, and more notes from eric
schmidt’s mwc keynote.

[3] http://blog.nielsen.com/nielsenwire/ online mobile/who-is-winning-the-
u-s-smartphone battle/. Who is winning the u.s. smartphone battle?

[4] http://googlemobile.blogspot.com/2011/03/update-on-android-market se-
curity.html. An update on android market security - official google mobile
blog.

[5] Mohammad Nauman, Sohail Khan, and Xinwen Zhang. Apex: extending
android permission model and enforcement with user-defined runtime
constraints. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’10, pages 328–332,
New York, NY, USA, 2010. ACM.


