
CSP AiDer: An Automated Recommendation of Content Security Policy for Web
Applications

Ashar Javed
PhD Student

Hamburg University of Technology (TUHH)
Hamburg, Germany

justashar@gmail.com

Abstract—Unintended cross-domain content flows are a
major security weakness of current web design. Cross Site
Scripting (XSS) and Cross Site Request Forgery (CSRF) are
widely recognized symptoms of this problem. In the span of
just a few years, dozens of high-profile attacks against websites
using Cross Site Scripting and Cross Site Request Forgery
for the purposes of compromising private data, bring down
essential systems, malware planting, clickjacking or otherwise
wreak havoc on our lives. Content Security Policy (CSP) is a
Mozilla initiative to provide website administrators with a way
to specify how content interacts on their web sites—a security
mechanism pressingly needed by the uncontrolled Web. The
policy is delivered via an HTTP response header. To assist web
site administrators, in this work, we present the first automated
approach for the construction of content security policies in
web applications. Using our prototype implementation called
CSP AiDer, we have contributed in the recommendation of
CSPs of more than 10000 web sites. We informed a number of
major web sites about the CSPs we identified, and our findings
were confirmed by mainstream web sites such as Twitter.

I. INTRODUCTION

Brandon Sterne et al. proposed the Content Security
Policy (CSP). Content Security Policy is a Mozilla initiative
to provide website administrators with a way to specify
how content interacts on their web sites—a security
mechanism desperately needed by the uncontrolled Web.
The policy is delivered via an HTTP response header.
Content Security Policy provides granular controls enabling
website administrators to restrict the locations from which
different types of web content can load. The main goal
of Content Security Policy is to prevent malicious code
from being injected into a website and executed within the
context of that site.

In this work, we present the first automated approach
for the construction of content security policies in web
applications. To the best of our knowledge, no tools have
been presented to date for the recommendation of CSPs
in web applications, and no extensive studies have been
published on the topic. Before creating the policy itself, web
application developers need to understand all the content
included in the site and from which sources (scheme, host,
or port) they are drawn from. At the time of the writing
of this work, the most effective means of recommending
CSPs for websites is via manual inspection which can be
hard and error-prone for complex sites. In order to show
the effectiveness of our approach, we used CSP AiDer
to conduct a large-scale study of more than 10000 popular
websites. When we were able to obtain contact information,
we informed the websites of their respective CSPs we
constructed. In the cases where the representatives of the

concerned websites wrote back to us, our findings were
confirmed. Website administrators of well-known websites
such as mobile.twitter.com1, About.com, History.com, Esp-
ncricinfo, BBC WebWise, Newsified and Geo TV confirmed
that the policies found by CSP AiDer corresponds to their
websites at the time of writing. In summary, the poster makes
the following contributions:

• We present the first automated approach for the con-
truction of safe policies i.e. CSPs in web applications.
This may facilitate web site administrators to construct
safe policies their web sites. Our approach consists
of components that analyze the content on the current
page and recommends a Content Security Policy based
on the types of content it finds on the page and the
sources of that content. The implementation also takes
into account resources that are dynamically added to
the page by JavaScript.

• We describe the architecture and implementation of the
prototype of our approach that we call CSP AiDer.
CSP AiDer is able to crawl websites and construct
CSP based on the site’s “expected behavior”.

• We present and discuss the large-scale, real-world ex-
periments we conducted with more than 10000 popular
websites. Our experimental evaluation show the effi-
ciency and the scalability of CSP AiDer.

II. AUTOMATED RECOMMENDATION OF CONTENT
SECURITY POLICY WITH CSP AIDER

Our Content Security Policy Aiding System (CSP
AiDer) to automatically recommend CSP for websites
consists of four main components: A browser, a crawler,
scanner and CSP constructor.

The first component is an instrumented browser that is
responsible for fetching the webpages and rendering the
content. The instrumented browser in CSP AiDer first
waits until the target page is loaded. After the browser has
finished parsing the DOM, executing the clientside scripts,
and loading additional resources, a browser extension (i.e.,
plugin) extracts the content. The browser extension has
been developed using the standard technology offered by
the Mozilla development environment: a mix of Javascript
and XML User Interface Language (XUL). The XUL is
flexible and extensible.

The second component is a crawler that communicates
with the browser through a bidirectional channel. This

1Twitter has implemented CSP on its mobile website which is aimed at
thwarting cross-site scripting (XSS) attacks.

mobile.twitter.com


channel is used by the crawler to inform the browser on
the URLs that need to be visited. Furthermore, the channel
is also used to retrieve the collected information from the
browser. We used the Heritrix public domain Web crawler
to gather a crawl of over 10000 Internet Web sites.

Every time the crawler visits a page, it passes the
extracted information to the scanner so that it can be
analyzed. Similar to other scanners, it would have been
possible to directly retrieve web pages without rendering
them in a real browser. However, such techniques have the
drawback that they cannot efficiently deal with dynamic
content that is often found on Web pages (e.g., Javascript).
By using a real browser to render the pages we visit, we are
able to analyze the page as it is supposed to appear after
the dynamic content has been generated. The ability to deal
with dynamic content is a necessary prerequisite to be able
to construct content security policy for web mashups. The
scanner is responsible for analyzing the page to determine
the types of content it finds on the page and the sources of
that content. The scanner also takes into account resources
that are dynamically added to the page by JavaScript.

The last component in our CSP AiDer system is gen-
erator. CSP generator recommends CSP based on the in-
formation that are coming from scanner. In other words
generator turns a list of sources into proper CSP syntax. All
the collected information about CSP is stored in a database
that is later analyzed by a statistical component that groups
together information and generates a report. The general
architecture of the system is summarized in figure 1.

Figure 1. The architecture of the CSP AiDer Tool.

A. Implementation

Our implementation is the JavaScript library used by both
the ’scanner’ and ’generator’ component. Our JavaScript
library has 455 lines (including comments).

B. Example Policies Constructed by CSP Aider
Constructed CSP of Technorati:

The leading blog search engine and directory, http://
technorati.com/ indexes more than a million blogs.
X-Content-Security-Policy: default-src ’self’;
img-src ’self’ scm-l3.technorati.com i.ytimg.com

content.yieldmanager.com
content.yieldmanager.edgesuite.net
aidps.atdmt.com tmstats.technoratimedia.com
t.skimresources.com;

script-src www.google-analytics.com scm-l3.technorati.com
ad-cdn.technoratimedia.com
tmx.technoratimedia.com
b.scorecardsearch.com edge.quantserve.com
cdn.krxd.net services.krxd.net
pagead2.googlesyndication.com
adadvisor.net
ad.technoratimedia.com
ib-ibi.com
tcr.tynt.com;

object-src content.yieldmanager.edgesuite.net;
frame-src ib.adnxs.com;
style-src scm-l3.technorati.com;

Constructed CSP of Mobile.Twitter.com:

X-Content-Security-Policy: default-src ’self’;
img-src si0.twing.com;
script-src ;
style-src si0.twimg.com;

III. EVALUATION

To do this, we conduct a large-scale outward-looking
study by crawling the Web, downloading content from a
large number of sites, and then analyzing it to determine
CSP. In an experiment, we collected 7,000 unique URLs
from the public database of Alexa. In particular, we
extracted the top ranked sites from each of the Alexa’s
categories. Each website was considered only once even
if it was present in multiple distinct categories, or with
different top-level domain names such as www.google.com
and www.google.de. In addition, we crawled award
winning mashups from http://mashupawards.com/winners/
site and mashups directory available at http:
//www.programmableweb.com/mashups/directory.

IV. CONCLUSION

Web applications are not what they used to be ten
years ago. Popular web applications have now become
more dynamic, interactive, complex, and often compose
content from multiple web sites. Unfortunately, as the
popularity of a technology increases, it also becomes a
target for criminals. As a result, most attacks today are
launched against web applications. CSP provides not only
an ability for web sites to specify what types of content
may be loaded (and from where), but also some protection
from cross-site scripting and cross-site request forgery
by preventing inappropriate or unauthorized cross-domain
communication.
In this work, we present the first automated approach
for the construction of CSPs in web applications. Our
prototype implementation called CSP AiDer is able to
crawl websites and recommend CSP. In order to determine
the feasibility of our approach, we analyzed more than
10000 popular websites and have contributed in the
recommendation of their CSPs. We informed the sites for
which we could obtain contact information, and some of
these sites wrote back to us and confirmed our findings. We
hope that this work will help in raise awareness about CSP.

http://technorati.com/
http://technorati.com/
www.google.com
www.google.de
http://mashupawards.com/winners/
http://www.programmableweb.com/mashups/directory
http://www.programmableweb.com/mashups/directory

	Introduction
	Automated Recommendation of Content Security Policy with CSP AiDer
	Implementation
	Example Policies Constructed by CSP Aider

	Evaluation
	Conclusion

