Poster: Analyzing Inter-Application
Communication in Android

Erika Chin*, Adrienne Felt*, Kate Greenwood!, David Wagner!
*Graduate Student TUndergraduate Student ¥Professor
Department of Computer Science
University of California, Berkeley
Berkeley, California 94720
{emc, apf, kate_eli, daw } @cs.berkeley.edu

I. INTRODUCTION

Over the past decade, mobile phones have evolved from
simple devices used for phone calls and SMS messages to
sophisticated devices that can run third-party software. Phone
owners are no longer limited to the simple address book
and other basic capabilities provided by the operating system
and phone manufacturer. They are free to customize their
phones by installing third-party applications of their choosing.
Mobile phone manufacturers support third-party application
developers by providing development platforms and software
stores (e.g., Android Market, Apple App Store [1], [2]) where
developers can distribute their applications.

Android’s application communication model further pro-
motes the development of rich applications. Android devel-
opers can leverage existing data and services provided by
other applications while still giving the impression of a single,
seamless application. For example, a restaurant review appli-
cation can ask other applications to display the restaurant’s
website, provide a map with the restaurant’s location, and call
the restaurant. This communication model reduces developer
burden and promotes functionality reuse. Android achieves
this by dividing applications into components and providing a
message passing system so that components can communicate
within and across application boundaries.

Android’s message passing system can become an attack
surface if used incorrectly. In this poster, we show the risks
of Android message passing and identify insecure developer
practices. If a message sender does not correctly specify the
recipient, then an attacker could intercept the message and
compromise its confidentiality or integrity. If a component
does not restrict who may send it messages, then an attacker
could inject malicious messages into it.

We have seen numerous malicious mobile phone appli-
cations in the wild. For example, SMS Message Spy Pro
disguises itself as a tip calculator and forwards all sent and
received SMS messages to a third party [3]; similarly, Mo-
biStealth records SMS messages, call history, browser history,
GPS location, and more [4], [5]. This is worrisome because
users rely on their phones to perform private and sensitive
tasks like sending e-mail, taking pictures, and performing
banking transactions. It is therefore important to help devel-

opers write secure applications that do not leak or alter user
data in the presence of an adversary.

We examine the Android communication model and the
security risks it creates, including personal data loss and cor-
ruption, phishing, and other unexpected behavior. We present
ComDroid, a tool that analyzes Android applications to detect
potential instances of these vulnerabilities. We used ComDroid
to analyze 20 applications and found 34 vulnerabilities in 12
of the applications. Most of these vulnerabilities stem from
the fact that Intents can be used for both intra- and inter-
application communication, so we provide recommendations
for changing Android to help developers distinguish between
internal and external messages.

II. BACKGROUND

To understand the threats that the communication model
introduces, we first give a brief overview of Android. Android
applications are broken down into components, application
building blocks. There are four types of components: Activ-
ities, Services, Broadcast Receivers, and Content Providers.
Activities provide the user interfaces of the application. Ser-
vices run in the background and do not interact with the user.
Broadcast Receivers respond to messages sent by the system
or other applications. Content Providers are databases that are
addressable by their application-defined URIs.

Intents are messages passed between or within applications.
Intents can be sent between 3 of the 4 components: Activities,
Services, and Broadcast Receivers. Upon receipt of an Intent,
each component performs a different functional task. Intents
can start an Activity, start or bind to a Service (requesting a
task to be performed), or be sent to be processed by a Receiver.

The Android system provides a few ways to limit a com-
ponent’s exposure to Intents. Components can be set to be
accessible to only the application (private components) or
global to the system (public components). They can also
require that the invoking components/Intents have specific
permissions (with varying degrees of difficulty to obtain).

Intent sending can also be restricted. Intents can be explic-
itly addressed to a particular component. This will prevent
unauthorized components from receiving the Intent. Alter-
natively, they can be left unaddressed and the system will
determine the appropriate recipient component.



III. ATTACKS AND ANALYSIS

We examine the security challenges of Android commu-
nication from the perspectives of Intent senders and Intent
recipients. In our poster, we show how implicit, unprotected
Intents to can be received by the wrong application, potentially
leaking user information. In Broadcast theft, a broadcast Intent
can be sniffed, tampered with or stolen by a malicious compo-
nent. In Activity hijacking, an Activity Intent can be intercepted
and a malicious Activity can be displayed in its place. This
can result in unexpected actions being taken, phishing (pass-
word/data theft), and data injection through false response. In
Service hijacking, a Service Intent can be intercepted by a
malicious Service with similar results as Activity hijacking. It
also is a more stealthy attack as no user interface is involved.
All of these attacks also prevent legitimate actions from being
performed by the rightful component recipient.

Similarly, we consider vulnerabilities related to receiving
malicious external Intents. If an application’s components
are declared incorrectly or are not strongly protected via
permissions, external applications can invoke its components
in surprising ways or inject malicious data into the application.
We call this class of attacks Intent spoofing. In malicious
broadcast injection, a malicious Intent is sent to a trusting
receiver. This can result in an unauthorized action being taken
and/or data injection. In malicious Activity/Service launch, a
malicious Intent is sent to a trusting Activity/Service. This can
result in an unauthorized action being taken, application state
change, data modification/injection, and/or data leakage and
corruption.

We built a tool, ComDroid, to detect these vulnerabilities.
The tool statically analyzes Dalvik executable files. As no
application source code is needed, ComDroid can be used
by end-users, the Android Market, and third-party reviewers
in addition to developers. ComDroid performs flow-sensitive,
intraprocedural analysis, and examines the permissions defined
by the application and the Android system, Intents sent by
the application, and components that receive Intents. It issues
warnings when it finds potential vulnerabilities.

IV. RESULTS

We ran ComDroid on the top 50 popular paid applications
and on 50 of the top 100 popular free applications on the
Android Market [1]. We manually examined 20 of these
applications to check ComDroid’s warnings, evaluate our tool,
and detect vulnerabilities.

ComDroid generated 181 warnings for the 20 applications
and our manual review confirmed 20 definite vulnerabilities
(which do not rely on user interaction), 14 spoofing vulner-
abilities (which may occur if the user is tricked), and 16
common, unintentional bugs. Of the 20 applications examined,
9 applications contain at least 1 definite vulnerability and 12
applications contain either definite or spoofing vulnerabilities.

In 25 cases, we were unable to determine whether warnings
were vulnerabilities. We cannot always determine whether
a surface is intentionally exposed without knowing the de-
veloper’s intentions. We were uncertain of 25 of the 181

warnings. The remaining 106 warnings were false positives,
i.e., not dangerous or spoofing vulnerabilities or common bugs.
Of these, 6 of the warnings should not have been generated
and can be attributed to shortcomings in our implementation
of ComDroid. The remaining 100 false positives are still
exploitable attacks. However, the impact of these attacks
is minor: They would be merely a nuisance to the user.
For example, an Activity that turns on a “flashlight” when
launched or takes some other trivial action would fall into
this category. Because they represent only a nuisance, we
conservatively decided not to classify them as vulnerabilities.

In our poster, we discuss the results of a few of the applica-
tions we manually examined to illustrate how applications can
be attacked and we reveal common developer misunderstand-
ing of the current Intent system. We also recommend changes
to the Intent system that will eliminate or decrease the number
of vulnerabilities in these applications.

V. CONCLUSION

While the Android message passing system promotes the
creation of rich, collaborative applications, it also introduces
the potential for attack if developers do not take precautions.
We examine inter-application communication in Android and
present several classes of potential attacks on applications.
Outgoing communication can put an application at risk of
Broadcast theft (including eavesdropping and denial of ser-
vice), data theft, result modification, and Activity and Service
hijacking. Incoming communication can put an application at
risk of malicious Activity and Service launches and Broadcast
injection.

We provide a tool, ComDroid, that developers can use to
find these kinds of vulnerabilities. Our tool relies on DEX
code, so third parties or reviewers for the Android Market
can use it to evaluate applications whose source code is
unavailable. We analyzed 100 applications and verified our
findings manually with 20 of those applications. Of the 20
applications, we identified 12 applications with at least one
vulnerability. This shows that applications can be vulnerable
to attack and that developers should take precautions to protect
themselves from these attacks.

REFERENCES

[1] “Android Market,” http://www.android.com/market/.

[2] “iPhone App Store,” http://www.apple.com/iphone/apps-for-iphone/.

[3] M. A. Troy Vennon, “Android malware: Spyware in the Android Market,”
SMobile Systems, Tech. Rep., March 2010.

[4] T. Vennon, “Android malware: A study of known and potential malware
threats,” SMobile Systems, Tech. Rep., February 2010.

[5] “MobiStealth,” http://www.mobistealth.com/.



