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Abstract—TXBOX is a new system for sandboxing untrusted
applications. It speculatively executes the application in a
system transaction, allowing security checks to be parallelized
and yielding significant performance gains for techniques such
as on-access anti-virus scanning. TXBOX is not vulnerable to
TOCTTOU attacks and incorrect mirroring of kernel state.
Furthermore, TXBOX supports automatic recovery: if a viola-
tion is detected, the sandboxed program is terminated and all
of its effects on the host are rolled back. This enables effective
enforcement of security policies that span multiple system calls.

I. INTRODUCTION

Secure execution and confinement of untrusted applica-

tions is a long-standing problem in system security [35].

We present a new approach to constructing secure, efficient

sandboxes based on system transactions.1 In general, sys-

tem transactions guarantee that a sequence of updates to

system resources satisfies atomicity, consistency, isolation,

and durability (ACID). Transactions are increasingly popular

for managing concurrency in modern operating systems.

Our prototype system, TXBOX, uses transactions for (1)

speculative execution of untrusted applications, (2) uncir-

cumventable enforcement of system-call policies, and (3)

automatic recovery from the effects of malicious execution.

TXBOX consists of a relatively simple, policy-agnostic

security monitor running in the OS kernel and a user-level

policy manager. The separation of the security policy and the

enforcement mechanism facilitates management of policies.

Before the transaction associated with a sandboxed program

commits, the monitor inspects its effects on the system

(conveniently assembled in the transaction’s workset and

its system-call log) and checks if they satisfy the policy.

If so, the transaction is committed and updates become

visible to the rest of the system. Otherwise, the transaction

is aborted and the system is restored to a good state. TXBOX

is suitable for sandboxing “one-shot” execution of unknown,

untrusted programs, as well as for model-based enforcement

of system-call behavior of known benign programs.

Uncircumventability. TXBOX cannot be circumvented by a

sandboxed process. Its kernel-based enforcement mechanism

prevents exploitation of incorrect mirroring of the kernel

1System transactions are not transactional memory. System transactions
deal with accesses by a user process to system resources such as files and
pipes, not with memory accesses.

state, TOCTTOU races, and/or other semantic gaps between

the security monitor and the OS [21, 58]. Unlike any monitor

that infers effects on the OS from the periphery of the kernel,

the effects analyzed by the TXBOX monitor when making

security decisions are exactly the effects that would take

place if execution is permitted.

Recoverability. Existing system-call monitors must allow or

deny every system call made by the untrusted program be-

fore it executes. Once the call is permitted to execute, there is

no way to recover. Therefore, they must be able to detect the

very first sign of misbehavior since the effects of a malicious

execution cannot be “undone.” By contrast, TXBOX executes

untrusted programs speculatively, inside a transaction. If the

monitor determines later that the program has violated a

security policy, it aborts the transaction and the system is

automatically rolled back to a benign state. All changes

made by the violating program to the file system effectively

disappear, child processes are stopped, and buffered local

inter-process communication is canceled, leaving concurrent

updates made by other programs undisturbed.

To illustrate the benefits of recoverability, Section VI

shows how TXBOX can restore the original state of local

files if an untrusted program (e.g., a multimedia converter)

attempts to violate the sandboxing policy.

Performance. On realistic workloads, the performance over-

head of TXBOX is less than 20% including the cost of

supporting transactions and less than 5% over untrusted exe-

cution in a transactional OS. Note that there is a compelling

secular (i.e., unrelated to security) reason for supporting

system transactions, namely, managing concurrency.

TXBOX can take advantage of multi-core processors. In

Section VI, we show how to use TXBOX to execute an anti-

virus scan in parallel with the speculative execution of an

untrusted program. This makes on-access scanning practical

for routine use in production systems.

Expressive policies. TXBOX can enforce a rich class

of practical security policies. This includes all policies

supported by system-call interposition tools such as Sys-

trace [49], system-call policies for malware detection [7, 33,

36], model-based system-call automata [26, 52, 56], data-

flow policies on system-call arguments [5], and, in general,

any policy expressible as a security automaton [16] over

system calls and system resources. For system-call policies,
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TXBOX provides uncircumventability, recoverability, and

parallelization of policy checking.

Unlike system-call monitors, TXBOX also supports secu-

rity policies on lower-level objects such as files and sockets.

This includes access-control policies on system resources,

e.g., blacklists and whitelists of files and directories. Because

system transactions span fork and exec, TXBOX enables a

simple form of information-flow control by tracking not just

the resources accessed by the monitored process, but also

those accessed by its children. For these policies, TXBOX

provides uncircumventability and recoverability.

Semantic fidelity. By analogy with hardware transactional

memory, a very different mechanism which implements a

similar abstraction, TXBOX can be “deconstructed” into

grouping, rollback, access summary, and access check com-

ponents [30]. Grouping enables the security monitor to

observe the cumulative effects of an entire sequence of

system calls before making the security decision. Rollback

enables recovery from the effects of malicious execution.

Access summary assembles all of the program’s effects at

the ideal layer of abstraction for making security decisions:

changes to kernel data structures, updates to file contents,

system calls and their arguments, etc. Access checks prevent

malicious programs from affecting the rest of the system.

Implementation. Our prototype implementation is based on

TxOS [48], a version of commodity Linux with support

for system transactions. The main differences are as fol-

lows. TXBOX is a sandbox architecture based on system

transactions; TxOS provides a concrete implementation of

system transactions. The focus of TxOS is on managing

concurrency. Trusted applications can take advantage of

system transactions to prevent TOCTTOU conditions such

as access/open file-system races, but TxOS per se does not

deal with sandboxing untrusted code or preventing attacks

on the host machine by malicious applications.

Organization of the paper. In Section II, we describe the

challenges of building a robust sandbox and how they are ad-

dressed by TXBOX. Related work is surveyed in Section III.

System transactions are introduced in Section IV. Design

and implementation of TXBOX are described in Section V

and evaluated in Section VI. We analyze the limitations of

our approach in Section VII and conclude in Section VIII.

II. BUILDING A BETTER SANDBOX

A. Understanding behavior of the sandboxed program

A malicious program can attack its host machine in a

variety of ways. To block malicious behavior, the sandbox

must be observing the program at the right level of abstrac-

tion. For example, assembly-level inline reference monitors

can enforce properties such as control-flow integrity [1], but

preventing a program from opening a network connection

after reading private files requires visibility into OS abstrac-

tions. Reconstructing OS-level behavior from a hardware-

level view of the system requires non-trivial effort [25].

Even if the security monitor is observing the application’s

behavior in the OS, many straightforward observation points

are prone to subtle errors that can compromise security.

Consider a naı̈ve user visiting a malicious website. The site

appears to host a video file, but asks the user to install

a codec to play it. The “codec” contains malicious code

which steals the user’s private data and sends it over the

network. This particular attack can be prevented if the codec

is executed in a sandbox which enforces a simple policy: “an

untrusted program should not read the user’s private files.”

At first glance, this policy can be enforced by intercepting

all open system calls and checking whether the argument

is one of the forbidden files. Unfortunately, the system-call

API in modern OSes such as Linux is extremely rich in

functionality, giving the attacker many ways to achieve his

goal. For example, the malicious codec can create a soft

link pointing to a public file and then change it so that it

points to a private file. Therefore, the system-call monitor

must also check link system calls, and so on. To enforce

even simple policies, a system-call monitor must know all

possible system-call sequences that can lead to a violation

and the monitor must check every call which might belong

to such a sequence. This is not only difficult to implement

correctly but can also degrade performance.

Even if the system-call monitor correctly tracks all rele-

vant system calls, it must completely understand the effects

of the sandboxed program’s behavior on the host system:

which files have been accessed, what is the cumulative

effect of several system calls, etc. This is a notoriously

difficult problem. System-call interposition tools have been

plagued by TOCTTOU (time-of-check-to-time-of-use) vul-

nerabilities [21, 58] which enable malicious programs to

exploit incorrect mirroring of kernel state inside the security

monitor and discrepancies between system calls as observed

by the interposition tool and as executed by the kernel.

By design, TXBOX is immune to TOCTTOU attacks.

Sandboxed processes run inside separate transactions, so

changes made by one of them to their shared state will not

be visible to the other until the transaction commits. If a

sandboxed process spawns a child, both run inside the same

transaction and their updates to system state are reflected

in the same transactional workset. Policy enforcement in

TXBOX is performed by inspecting objects in the workset

and thus cannot be evaded by splitting updates between the

parent and the child.

Rather than construct an error-prone mapping of system-

call arguments or hardware-level events to OS state changes,

TXBOX directly inspects pending changes to kernel state

made by the transaction wrapping the sandboxed process

and its children. This makes it easy to enforce whitelist

and blacklist access-control policies. Files and directories

are represented by their inodes (in the case of multiple
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file systems, also by superblock identifiers). The sandboxed

process cannot evade enforcement by switching mappings

between file names and inodes.

B. Recovering when a violation is detected

When a conventional sandbox detects that the confined

program is trying to escape the sandbox (e.g., make a

forbidden system call or access a forbidden resource), it can

block that particular action but cannot undo the program’s

previous effects on the host. If the policy is incomplete or if

a violation can be detected only after multiple system calls,

the damage may already have been done.

For example, consider a codec downloaded by the user

from an untrusted website. A reasonable sandboxing policy

may ensure that the codec can only write to files in the user’s

video directory. Suppose the codec is malicious and, after

damaging or infecting the user’s videos, attempts to escape

the sandbox by connecting to the network. The sandbox

detects this, denies the call, and terminates the codec, but

the user’s video files have already been corrupted.

When TXBOX detects a policy violation, the transaction is

aborted and the system automatically reverts to a good local

state (except for the effects of previously allowed external

I/O in certain enforcement regimes—see Section V-D). The

program’s effects on the host are undone, while concurrent

updates performed by other processes are left in place. If

the policy is incomplete, as long as the sandboxed program

attempts to perform at least one of the forbidden actions,

TXBOX will roll back the effects of all of its actions.

C. Taking advantage of parallelism

It is difficult for a conventional sandbox based on system-

call monitoring to take advantage of parallelism in modern

multi-core processors. Whenever the sandboxed program

makes a system call, its execution must be paused in order

for the monitor to decide whether to allow or deny the call.

Because of this, the sandboxed program and the monitor

cannot be executed concurrently. This is also true for other

security checks such as anti-virus scanning. An untrusted

program must be scanned before it is executed because there

is no way to undo its effects on the host if the scanner detects

an infection after the program has been permitted to execute.

One way to balance security and performance is to first

execute a copy of the untrusted code in a monitored sandbox

and, if no problems are detected, execute it “natively” in the

future. Unfortunately, it is difficult to make the monitoring

transparent [22], and this approach is thus vulnerable to

“split-personality” malware which behaves benignly if it is

being observed and maliciously otherwise (see Section III).

TXBOX can take advantage of parallelism because system

transactions are a form of speculative execution. TXBOX lets

the sandboxed program run with close-to-native performance

while performing security checks such as anti-virus scanning

in parallel. If a violation is detected, all changes made by the

program are discarded. Because only a single copy of the

untrusted code is executed, split-personality malware may

refuse to execute in TXBOX, but the effects of malicious

behavior do not enter into the system.

III. RELATED WORK

Speck. Nightingale et al. proposed a system called

Speck [40], which uses a multi-core processor to specu-

latively execute the untrusted program while concurrently

performing security checks on an instrumented copy on

another core. To synchronize the copies, Speck records

all non-deterministic system calls (e.g., read) made by

the instrumented copy and replays their outcome to the

uninstrumented process.

Because security checks are not applied to the unin-

strumented copy, Speck may be circumvented by “split-

personality” malware which behaves differently in moni-

tored and unmonitored environments. In general, any ap-

proach that involves running an instrumented and uninstru-

mented copies of the same code requires instrumentation

to be completely transparent. Speck uses Pin, which is

designed to be transparent to a well-behaved program. A

malicious program, however, can detect Pin by checking if

certain dynamically loaded libraries are present in its address

space. Building an instrumentation system which is truly

transparent against an actively malicious program is difficult.

Because instrumentation used by Speck is not transparent,

a malicious program can take different paths depending

on whether it has been instrumented or not. If the paths

differ only on system calls Speck considers deterministic

and the instrumented copy passes security checks, then the

uninstrumented copy may behave maliciously without being

detected. This is a TOCTTOU vulnerability. The problem is

not the lack of transparency per se (we do not claim that

TXBOX is transparent), but the lack of transparency com-

bined with concurrent execution of two copies of untrusted

code enables “split-personality” malware to evade detection.

Presumably, Speck could be modified to log and replay

all system calls, reducing the opportunities for the copies to

deviate. Such frequent synchronization would dramatically

reduce the exploitable parallelism and defeat the primary

purpose of parallel security checking.

Monitor

Speculative Instrumented

Monitor

Speculative
transaction

Security
checks

TxBox

Core 1 Core 2

Speck

system calls

Sync on
non−deterministic

Security
checks

Core 1 Core 2

Figure 1. Comparison of TXBOX and Speck architectures.
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TXBOX cannot be circumvented by “split-personality”

malware. It speculatively executes a single copy of the un-

trusted program inside a transaction and all security checks

are performed on that copy. Figure 1 shows the difference

between TXBOX and Speck. Unlike Speck, the TXBOX

security monitor has access to the transactional workset,

which gathers all accesses to system objects by the untrusted

program. Depending on the nature of the check, the monitor

can request the kernel to store the necessary state informa-

tion and access it in parallel with the sandboxed process (see

Section VI). Unlike Speck, TXBOX cannot enforce security

policies which require information not readily available to

the kernel (e.g., data flows in application’s memory).

Using transactions for security. Birgisson et al. present a

reference monitor architecture which uses Software Transac-

tional Memory (STM) to enforce security policies for mul-

tithreaded applications [6]. These policies deal with internal

objects residing in application’s memory. Harris and Peyton-

Jones propose a framework for programmer-provided data

invariants in the Haskell STM [29]. Chung et al. employ

transactional memory in a thread-safe binary translation

mechanism which they use to implement information-flow

tracking in application’s memory [8].

The key difference is that transactional memory enables

transactional semantics for accesses to application’s mem-

ory, while system transactions enable transactional semantics

for accesses to system resources by a user process. STM-

based systems are designed to enforce application-specific

security policies, which are orthogonal to system-level poli-

cies and cannot be enforced by our kernel-level security

monitor. For system-level policies, transactional memory is

at the wrong level of abstraction. STM-based enforcement

cannot span system calls and thus cannot protect access to

system resources such as files and network sockets.

Sidiroglou and Keromytis instrument application code

dealing with memory buffers to provide transaction-like

semantics for detecting and recovering from buffer overflow

attacks [54]. Locasto et al. use transactional execution for

individual functions [38]. Unlike transactions internal to an

application, system transactions in TXBOX provide a general

mechanism for inspecting and, if necessary, rolling back

changes made by an application to OS state.

Clark et al. define a model for commercial security

policies and suggest the use of well-formed transactions to

preserve data integrity [10]. In TXBOX, such restrictions can

be enforced via a policy that controls access to sensitive data.

Vino OS [53] allows applications to load extensions

into the kernel and uses transactions and software fault

isolation to protect the kernel from buggy and malicious

extensions. The goal is to restrict untrusted extensions to the

same range of behavior as user-level programs and properly

enforce standard access control on them. Transactions are

used to recover shared kernel state (e.g., release locks and

free memory) after a misbehaving extension is removed

and generally applied at the granularity of a single call

into the extension module. By contrast, TXBOX leverages

the transaction’s workset to inspect cumulative behavior of

an untrusted application, assure semantic fidelity of policy

checks, and enforce a wider range of security policies.

Sandboxes and system-call monitors. Prior sandbox ar-

chitectures include kernel-based systems [3, 4, 11, 19] and

system-call interposition tools [2, 27, 32, 49]. Interposition is

typically implemented using kernel-mode system-call wrap-

pers. In Section V-B, we show how their functionality can

be easily emulated in TXBOX.

Malicious programs can bypass wrapper-based enforce-

ment by exploiting race conditions and incorrect replication

of the OS state inside the security monitor (see [21, 58] and

Section II-A). Ostia [24] and Plash [51] solve these issues

by using delegation-based architectures. Rather than attempt

to enforce access control on semantically murky system-call

arguments, they restrict what file handles can be created in a

sandboxed process and only allow operations via approved

handles. Delegation-based architectures generally require

little or no changes to the OS kernel, instead modifying

libc to emulate forbidden API functions using approved

functions. Because the file-handle-based API (e.g., openat)

in most Unix systems is incomplete and because emulating

the Unix kernel API is inherently difficult, delegation-based

systems are prone to subtle security bugs [45, 46].

TXBOX occupies a different point in the design space of

sandbox architectures. It requires more kernel changes than

delegation-based sandboxes but does not need to solve the

problem of accurately emulating the OS API.

Capsicum is a capability-based sandboxing system which

adds new primitives to the UNIX API to support compart-

mentalization of applications [59]. The goals of Capsicum

are orthogonal to TXBOX. Its new API helps benign applica-

tions increase their trustworthiness, while TXBOX sandboxes

untrusted applications that use the standard Unix API.

Several sandboxes have been proposed for application

plugins, especially for Web browsers. Vx32 employs binary

translation and x86 segmentation [18], while Native Client

requires the code to be recompiled to a restricted subset of

the x86 ISA and also confines it using segmentation [62].

Xax places untrusted code in its own address space and

restricts it to a small subset of system calls, enforced by

system-call interposition [13]. The problem of protecting

trusted code from untrusted code in the same address space

is orthogonal to system-level sandboxing. System-level poli-

cies enforced by plugin sandboxes are typically simple and

disallow access to nearly all system resources.

Sun et al. combine system-call interposition with a se-

curity monitor between the virtual file system (VFS) and

the lower-level file system. This layer implements SEE, a

simple, transactional file system enforcing one-way isolation
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from an untrusted process [55]. SEE provides a speculative

execution environment similar to TXBOX but limited to the

file system and network, while TXBOX can also isolate

system calls such as fork and signal.

Placing sandboxing hooks at the VFS interface is some-

what similar to placing them in the system call table. Both

are appealing because they minimize OS changes and have a

tractable surface area. Just as system-call interposition mon-

itors ultimately struggle with problems such as TOCTTOU

races, a monitor and transactional file system implemented

below the VFS layer face challenges with insufficient hooks

into higher-level functionality. For instance, the isolation

mechanism of SEE is based on recording the timestamp

of the first read; in the case of file-system metadata in an

unmodified kernel, a low-level hook is typically called only

if the data is not in a VFS cache. In the common case

where the directory structure is cached, this timestamp-based

conflict detection can have false negatives that violate isola-

tion. The kernel-based isolation mechanism of TXBOX helps

avoid engineering and fidelity problems that are common in

security monitors at the periphery of the OS.

System-call monitoring for intrusion detection in benign

programs has been enhanced by using sequence relation-

ships [31, 60], call-site [52] and call-stack information [17,

20], and system-call arguments [5]. Static analysis can be

used to automatically extract system-call models from the

program’s code [26, 56]. This work can be viewed as a

source of system-call policies for TXBOX.

Virtual-machine-based monitors. Virtual machines (VM)

enable external inspection of both the OS and applications.

There is a large body of literature on using virtual machines

for intrusion detection, honeypots, etc. Unlike TXBOX, VM-

based methods can potentially protect even against kernel-

based malware [23], although there are many challenges:

granularity of checking, reconstruction of system-level be-

havior from hardware-level events, merging committed state

back into the system, and how to achieve close-to-native

performance while performing frequent security checks.

While in theory all policies described in Section V-B can

be enforced using a VM-based monitor, we are not aware

of any existing monitor that can (1) isolate execution of a

single untrusted user process in the guest OS, (2) detect

when it is about to violate a security policy, (3) terminate

the process and roll back its effects while leaving concurrent

updates performed by other processes in place, and (4)

impose minimal performance penalty on benign processes.

For example, ReVirt, a system that can record and replay

the VM state for analyzing intrusions [14], records events

at the granularity of the entire virtual machine. This is too

coarse for rolling back the effects of a single process.

Information-flow control. Kernel-based mandatory access

control (MAC) systems such as SELinux [42] and AppAr-

mor [41] can restrict an untrusted program to a subset of sys-

tem resources, but the administrator must identify in advance

which resources will be needed. This is non-trivial even for

relatively simple applications, thus these systems work only

for well-vetted applications and policies. Blacklist policies

such as “untrusted programs can access any directory in

the file system except /usr/private” can be cumbersome to

formulate using either a file-system confinement mechanism

such as chroot and jail, or a MAC system that requires

explicit assignment of access-control labels. By contrast,

TXBOX enables easy configuration and enforcement of

blacklist policies specifying only the resources that may not

be accessed by an application.

Operating systems with decentralized information-flow

control can enforce end-to-end access-control policies [15,

34, 63]. TXBOX does not propagate access-control labels

and thus is not able to enforce all policies supported by

these systems, but is simpler to deploy.

IV. SYSTEM TRANSACTIONS

System transactions are a programming abstraction that

provides atomicity, consistency, isolation, and durability

(ACID) properties for sequences of updates to system re-

sources such as files, pipes, and signals. Informally, from the

viewpoint of the system, either all updates are performed as

an atomic sequence, or none are. The system always remains

in a consistent state. If the transaction is aborted before it

finishes, all intermediate updates are rolled back as if none

of the actions inside the transaction had been executed.

When a process performs a “normal” call to the OS, the

effects of this call—for an example, an update to the state

of some system resource—become visible to other processes

as soon as the OS kernel releases its lock on the resource.

System transactions, on the other hand, enclose a code region

into a logical unit called a transaction, which may span

multiple system calls. All accesses to the system within a

transaction are kept isolated and invisible to the rest of the

system until the transaction commits. At the commit time, all

actions performed by the process within the transaction are

published atomically and become visible to other processes.

System transactions should not be confused with transac-

tional memory [37]. The primary purpose of system trans-

actions is to enable applications to express to the OS their

consistency requirements for concurrent operations [48]; in

this sense, they are akin to database transactions rather than

transactional memory. In this paper, however, we use them

for a very different purpose, to confine untrusted applications

in an uncircumventable sandbox.

System transactions require OS support. Our prototype of

TXBOX is based on TxOS, an experimental modification of

commodity Linux [48]. In TxOS, system transactions are

part of the OS interface. An application starts a transaction

by making a sys xbegin system call and ends it by calling

sys xend; all calls between are performed as part of a
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single transaction. TxOS allows both transactional and non-

transactional system calls to access the same, shared system

resources. The OS ensures that these accesses are correctly

serialized and contention is arbitrated fairly.

To keep track of the system objects accessed by a trans-

action, TxOS maintains a transactional workset. It stores

references to all kernel objects (inodes, etc.) for which the

transaction has private, “shadow” copies. For fast commit,

the workset is sorted by the kernel locking discipline. Each

entry in the workset contains a pointer to the stable object,

a pointer to the shadow copy, information about whether the

object is read-only or read-write, and a set of type-specific

methods (commit, abort, lock, unlock, release).

TxOS uses eager conflict detection. As soon as two

isolated processes attempt a conflicting access to a resource,

the OS rolls one back and the transaction is retried. Trans-

actions are serializable: TxOS does not allow a process to

make a shadow copy of potentially inconsistent state, and

all conflicts are detected before a transaction is allowed

to commit [47]. Under the default contention management

policy, the losing process is suspended until the transaction

that it lost to commits.

In TXBOX, transactional worksets provide a convenient

vantage point for the security monitor to inspect all potential

effects of the sandboxed process on the system state: all

files it accessed, all updates it intends to performs, etc. The

monitor decides whether these updates satisfy the security

policy and can be made visible to the rest of the system.

Support for system transactions comes at a modest per-

formance cost. The average overhead in TxOS, at the scale

of a single system call, is around 29% [48]. In Section VI,

we show the performance overhead of TXBOX for several

individual system calls and application workloads.
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Monitor Policy Decision 

Monitored
program
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Device

Policy Policy

Violation
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System call
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Figure 2. Overview of TXBOX architecture

V. DESIGN AND IMPLEMENTATION OF TXBOX

A. Architecture of TxBox

The architecture of TXBOX is shown in Fig. 2. The two

main parts are the security monitor, which runs in the OS

kernel, and the policy manager, which runs in user space.

The system administrator uses the policy manager to

define the policy as a set of regular expressions over system

call names and arguments and system objects such as inodes

and socket descriptors. Each regular expression is marked as

either a whitelist or a blacklist, which specifies, respectively,

the required or forbidden behavior of the sandboxed pro-

gram. The policy may also specify system calls that should

be denied while permitting the program to continue running.

The policy may specify critical system calls, which

cause a trap into the security monitor when invoked by

the sandboxed process. By default, critical calls always

include all calls related to program termination (e.g., exit
and exit group) and external I/O (e.g., network and inter-

process communication).

The policy manager compiles the policy and installs it

in the security monitor. The monitor forces each untrusted

user process to run inside a transaction and applies installed

policies as described in Section V-C. TXBOX depends on the

OS to support transactional system calls (see Section IV);

our prototype uses TxOS [48]. Because TxOS does not allow

one process to put another process in a transactional mode,

we modified the TxOS kernel so that the security monitor

can force user processes to run inside transactions.

While the sandboxed process is running inside a trans-

action, TXBOX maintains its trace consisting of (1) all

system calls the process made, (2) their arguments, and (3)

workset of the transaction, which contains references to all

system objects affected by the process (see Section IV).

Whenever the sandboxed process makes a critical system

call—for example, terminates or attempts to perform exter-

nal I/O—control is switched to the security monitor.

The monitor checks whether the trace of the process

violates the installed policy or not. If the policy has been

violated, the monitor can either roll back the transaction

and kill the violating process, or else pause the process,

generate a POLICY VIOLATION event, and call the user-

space policy manager for further investigation. The choice is

a policy configuration parameter. The manager can perform

additional checking (e.g., use ptrace to attach and examine

the memory of the sandboxed process) or request input from

the human operator, then inform the monitor whether the

sandboxed process should be killed and transaction rolled

back. Transactions aborted due to a policy violation are

prevented from automatically re-trying.

If the policy is not violated and the critical event that

caused invocation of the monitor is process termination,

the transaction is committed and all effects of the process’s

execution become visible to the rest of the system. The only

other default critical events are external I/O. If a non-default

call is listed as critical in the policy, the monitor executes

the call and continues the current transaction after checking

that the trace does not violate policy.

The trusted computing base of TXBOX consists of the OS

kernel and the user-space policy manager. In modern OSes,
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the administrator (root) can insert and remove kernel mod-

ules. Security of TXBOX only holds under the assumption

that the adversary does not have root access to the host.

B. Security policies

Security policies are defined by the system administrator

who uses the policy manager to install them in the security

monitor, as described in Section V-C. Different policies may

be associated with different user processes. The administra-

tor can specify either the sandboxed process when installing

a policy, or a path and a list of events. In the latter case, the

policy manager will automatically associate the policy with

any program residing on that path.

A TXBOX policy is an ordered list with any number of

primitives of one of three types: BLACKLIST, WHITELIST,

DENY. BLACKLIST primitives specify forbidden behavior.

WHITELIST primitives specify required behavior. DENY

primitives are lists of system calls which should be denied

if the sandboxed process tries to make them.

TXBOX matches primitives to the program’s trace in the

order they are written. Once a violation is detected (the

trace matches a BLACKLIST primitive or does not match a

WHITELIST primitive), TXBOX terminates the sandboxed

program and rolls back all of its local changes without

checking subsequent policy primitives.

BLACKLIST and WHITELIST primitives. These prim-

itives are regular expressions over system-call names and

arguments, or over system objects. TXBOX supports two

types of system objects in policies: inodes (of directories or

files) and sockets. In policies, these are prefixed by ‘I’ and

‘S’, respectively. An inode object has two attributes: number

and mode (e.g., read or write). If multiple file systems are

mounted at the same time, superblock identifiers can be used

to distinguish files from different systems that happen to

have the same inode number. The set of supported modes

is determined by the underlying transactional OS which

provides the worksets to TXBOX. A socket object has two

attributes: type (e.g., INET or UNIX datagram) and either

destination IP address (for INET sockets), or name (for

UNIX datagram sockets). Using low-level kernel objects

such as inodes rather than file names helps make security

decisions faster because the TXBOX security monitor can

match policies against transactional worksets without extra

lookups. In our current implementation, policies on objects

(marked as WREGEX) use inode numbers, while system-

call policies (marked as SREGEX) use file names.

If the policy involves a file name, the policy manager

retrieves the corresponding inode number and substitutes it

for the name before installing the policy. It also stores the

original file name. If the name’s inode mapping has changed

before an existing policy is automatically installed for a new

process, the policy is updated with the new inode number.

Policies involving file names should block creation of soft

and hard links, as shown below.

The TXBOX policy syntax allows complex policies to be

expressed in a modular manner. For example, suppose that a

known execution profile of some program says that it should

open a file in the ’/tmp’ directory other than ’secret’ for

reading. This can be enforced by the following policy, where

’(e)∗’ means “match expression e any number of times.”

BLACKLIST SREGEX *open:/tmp/secret:r*
BLACKLIST SREGEX *rename:/tmp/secret*
BLACKLIST SREGEX *symlink:/tmp/secret*
BLACKLIST SREGEX *link:/tmp/secret*
WHITELIST SREGEX (open:/tmp/*:r)*

Whitelist policies represent required behavior and can be

used to sandbox programs for which a system-level model

of correct behavior is available. Such models can be derived

by profiling the program’s execution or computed from the

program’s source or binary code using static analysis [26,

56]. Static models are conservative, thus any deviation from

a model-based whitelist policy means that the sandboxed

program is no longer executing the original code (typically,

because of a code-injection attack) and should be terminated.

Table I shows some example BLACKLIST and

WHITELIST policies. These policies are simple but can

effectively sandbox untrusted, potentially malware-infected

programs. For example, they can confine an untrusted file-

format converter downloaded from the Internet to reading

and writing files in a particular directory. In Section VI, we

report the experimental results of sandboxing the FFmpeg

multimedia converter with TXBOX.

In general, TXBOX can enforce any policy expressed as

a (possibly non-deterministic) security automaton [16]. This

includes policies designed to recognize malware by tracking

sequences and graphs of dependent system calls [7, 33, 36].

Multiple-call policies present a challenge to conventional

sandboxes because by the time the sequence has been

matched, the infected program has already performed system

calls whose effects will remain in the system. By contrast,

TXBOX can roll back all effects of a malicious execution.

Policies based on sequences or graphs of system calls

are not evasion-proof. If the malware writer is aware of the

policy, he may able to modify the behavior of malware so

that its system calls don’t match any of the signatures (this

may require changing the semantics of his malware). Nev-

ertheless, these policies are useful insofar as they accurately

describe the system-call behavior of existing malware.

DENY primitives. A DENY primitive consists of a single

system call and a regular expression over its arguments.

If a BLACKLIST or WHITELIST primitive is violated,

the sandboxed process is terminated and its transaction

is rolled back. By contrast, DENY primitives instruct the

monitor to block specified calls while permitting the process

to continue. DENY primitives can be used to emulate a

conventional sandbox which simply denies certain calls,
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Table I
SAMPLE TXBOX POLICIES.

Policy objectives for sandboxed process TXBOX policy

Cannot access both ‘AddressBook’ (inode 100) and

’EmbarrassingSecrets’ (inode 200)

BLACKLIST WREGEX (* I:100 *) AND (* I:200 *)

May not perform network I/O after accessing any file in

directory ’secret’ (inode 200)

BLACKLIST WREGEX * I:200 * S:1 *

May only write to the file ’/home/user1/outout’ (inode

150)

BLACKLIST WREGEX NOT(* I:150:w *) AND (* I:*:w *)

Must perform network I/O with IP address x.y.z.w WHITELIST WREGEX (S:1:x.y.z.w)*

Don’t allow any network I/O but continue execution

DENY connect*

DENY sendto*

DENY recvfrom*

possibly depending on the call’s arguments.

DENY primitives also enable the administrator to run

a sandboxed program without letting it perform certain

operations. For example, suppose the administrator wants

to run an untrusted codec in a sandbox but does not want

it to talk to the network. This can be done by installing

DENY primitives for all network I/O calls. If the codec

tries to contact the network (e.g., looking for updates), the

call will fail but the codec may be able to handle this and

continue local execution. Note the difference in enforcement

semantics: if network I/O calls are installed as BLACKLIST

primitives, then an attempt to make the call is a policy

violation and the process will be killed.

TXBOX also benefits from semantic fidelity. Consider a

conventional system-call monitor trying to block all net-

work communication. When presented with a write(fd,

buf) call, it must determine whether fd is mapped to a

socket, which requires tracking the effect of all prior system

calls. By contrast, TXBOX can easily determine whether fd

is a socket by inspecting the transactional workset.

C. Policy enforcement

The TXBOX security monitor is responsible for enforcing

security policies. It is implemented as a kernel module and

consists of four parts: character device driver, system-call

interposer, enforcer, and policy decision engine.

Character device driver. The character device driver pro-

vides an interface between the user-level policy manager

and the kernel-level security monitor. The policy manager

can be invoked automatically when a program residing in a

particular directory is executed (the mechanism for this is

described below). To sandbox a process, the policy manager

sends the policy and the process’s pid to the monitor through

the interface of the character device driver. It also compiles

the policy supplied by the system administrator into a string

which can be loaded into the monitor’s policy decision

engine. The policy includes two lists of system calls: those

that appear in BLACKLIST or WHITELIST primitives and

those that appear in DENY primitives. Policies may also

include critical system calls that will cause the system-

call interposer to trap into the security monitor. The set of

critical system calls always includes calls involving program

termination and external I/O. To prevent malicious user-

level processes from impersonating the policy manager, the

monitor will communicate only with processes that are

running with root privileges.

System-call interposer. The interposer patches the system

call table with TXBOX call wrappers. In contrast to con-

ventional wrappers, TXBOX wrappers are very simple (see

Algorithm 1). First, if the call and its arguments match one

of the DENY primitives in the policy, the call is blocked

and an error is returned to the process. TXBOX wrappers

can use kernel data structures to map arguments (e.g., file

descriptors) directly to kernel objects, eliminating the risk of

race conditions. Second, if the call has not been denied, it is

logged along with its arguments. Third, if the call is critical,

control is passed to the policy decision engine. Otherwise,

the call is permitted to execute. Note that the wrapper does

not try to determine if the call is malicious or not, since all

of its effects on the local system can be rolled back later if

a violation is detected.

To handle symbolic links, TXBOX relies on Dazuko’s

helper function which tracks the link’s target file. If the

argument file of a system call is a symbolic link, the TXBOX

wrapper calls this function to get the target’s name and adds

it to the trace instead of the name of the link.

Because rename calls can change the inode number

assigned to a file, TXBOX’s wrapper for rename keeps

the mapping from the old number to the new number.

Once the policy decision engine has decided to commit

the transaction, any installed policy that uses an old inode

number is updated with the corresponding new number.

Enforcer. The enforcer provides additional hooks into the

kernel transaction mechanism, forcing the sandboxed pro-

cess to run in transactional mode. When instructed by the

policy decision engine, it either commits the transaction, or
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Algorithm 1 Algorithm of a TXBOX system-call wrapper

if should deny(syscallname,pid) then

return error

else if should log(syscallname,pid) then

Add the syscall and its arguments to process-specific

syscall log

end if

if is critical call(syscallname) then

Invoke policy decision engine

if Policy violation detected then

Roll back the transaction and exit

end if

end if

Call the original syscall function

kills the process and aborts the transaction.

Policy decision engine. The policy decision engine is

invoked when the sandboxed process attempts to perform a

critical call. It has access to the process-specific system-call

log provided by the system-call wrapper and the transac-

tional workset provided by the OS. Together, they constitute

the trace of the process. The policy decision engine uses a

regular expression parser to match installed policies against

the trace and detect policy violations using Algorithm 2.

Intuitively, a trace violates the policy if it matches any of

the BLACKLIST primitives or if it deviates from any of the

WHITELIST primitives.

Algorithm 2 Algorithm for determining if process trace pt

violates policy p

for each BLACKLIST/WHITELIST primitive prim in pol-

icy p in specified order do

if (prim.regextype==WREGEX) then

if (!match(prim.regex,pt.txworkset) and (prim.type==

WHITELIST)) then

return violation

else if (match(prim.regex,pt.txworkset) and

(prim.type==BLACKLIST)) then

return violation

end if

else

if (!match(prim.regex,pt.syscalltrace) and (prim.type==

WHITELIST)) then

return violation

else if (match(prim.regex,pt.sycalltrace) and

(prim.type==BLACKLIST)) then

return violation

end if

end if

end for

return ok

If a violation is detected, the policy decision engine can

either instruct the enforcer to kill the sandboxed process and

abort the transaction, or pass control to the policy manager

for memory checks, etc., and wait for its decision.

If no violation is detected and the critical call that caused

the invocation of the policy decision engine is a termination

call such as exit or exit group, the engine instructs the

enforcer to commit the transaction. If the critical call is a

user-specified call other than external I/O, it is allowed to

execute inside the current transaction. Critical calls involving

I/O are handled as described in Section V-D.

Implementation. Our implementation of the TXBOX secu-

rity monitor is based on Dazuko [12], an open-source Linux

kernel module. It provides a character device interface and

supports system-call interposition in the kernel, which in

TXBOX is based on hooking the system call table but can

also be based on the Linux Security Module framework.

Implementing the TXBOX security monitor required sev-

eral substantial changes to Dazuko and TxOS. Dazuko

was modified to (i) compile and run on TxOS—this in-

cluded changing Dazuko to use TxOS kernel data struc-

tures (e.g., inodes) which are different from the standard

kernel data structures; (ii) implement TXBOX system-call

wrappers (described above); (iii) support communication

between the user-mode policy manager and the kernel-

mode security monitor through the character device in-

terface for installing policies and registering handlers for

ON POLICY VIOLATION events; and (iv) trap exec calls

which execute programs from specified directories and

switch control to the policy manager so that the program

can be sandboxed. Changes to TxOS included (i) allowing

system calls responsible for external I/O to execute non-

transactionally without affecting the current transaction and

(ii) enabling the TXBOX security monitor to force another

process to execute in a transaction.

The latter task presented an interesting challenge. In

TxOS, an application starts a transaction by calling xbe-
gin, which causes the common system-call handler in ‘en-

try.S’ to invoke the beginT ransaction kernel function,

followed by do sys xbegin. Obviously, there is no xbe-
gin in the sandboxed process. To force it into a transac-

tion (possibly in the middle of a system-call execution),

TXBOX cannot call beginT ransaction directly because

beginT ransaction checks if the current call is xbegin

and, if so, stores the context of the user process so that

it can be restored if the transaction is aborted. We added a

forced transaction flag (set by the TXBOX enforcer) to

the process-specific task structure and modified the handler.

If the sandboxed process makes a system call when the flag

is set, the handler saves the eax register which contains the

number of the actual call, replaces it with 342, the number of

xbegin, then calls beginT ransaction and do sys xbegin.

Once the forced transaction starts, eax is restored to the
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number of the actual call.

To implement the TXBOX policy decision engine, we

ported a regular expression library to execute in the kernel.

We use hash tables to store and quickly look up policy-

related information. The hash-table key for every policy

object is the pid of the process on which that policy is

being enforced. A policy object contains the list of all

WHITELIST and BLACKLIST regular expressions which

are part of that policy. It also contains three hash tables for

looking up, respectively, if a system call should be logged,

if it should be denied, and if it is critical.

D. Handling external I/O by sandboxed process

A typical application mostly performs two types of I/O:

disk and network. System transactions buffer all disk I/O un-

til the transaction commits or aborts. Certain operations—in

particular, those requiring bidirectional communication to

an external entity (this includes network I/O) and writing

to external devices—cannot be buffered until the end of a

transaction and thus have to be executed non-transactionally.

How to handle external I/O whose effects cannot be

undone is a generally unsolvable problem faced by any

sandbox. If the sandboxed code attempts to make a remote

network call, the sandbox must allow or deny the call—even

if the information about the code’s execution so far is

insufficient to determine whether the code is malicious or

benign. Distributed transactions are not feasible in most

sandboxing scenarios because the destination of the call

made by an untrusted application may be malicious and not

conform to transactional semantics (e.g., it may refuse to

roll back when instructed by the security monitor).

Conventional system-call monitors make the allow/deny

decision on a call-by-call basis. The TXBOX solution is

superior. When the sandboxed process attempts to perform

an external I/O call, TXBOX first checks if the currently

enforced policy has any DENY primitives that match this

system call and its arguments. If such a DENY primitive

exists, TXBOX returns an error without performing the

external I/O operation and continues executing the program

as part of the current transaction, giving it an opportunity to

handle the failed call. Denying an I/O call is always a safe

decision because it guarantees full recoverability, regardless

of what the sandboxed process does to the local system.

If there are no DENY primitives matching the call,

control is switched to the policy decision engine. The engine

inspects the trace of the process, which includes all of its

prior system calls, their arguments, and all system objects

affected by the process, and matches the trace against the

policy as in normal enforcement (see Section V-C).

If the process has already violated the policy, TXBOX

terminates it and aborts the current transaction, rolling back

all of its effects. If the process has not yet violated the policy,

TXBOX executes the I/O operation outside of the current

transaction but continues running the process in the current

transaction. If the process is later found to have violated

the policy, TXBOX cannot roll back the I/O calls, but local

recoverability is always preserved.

In summary, TXBOX gives two enforcement options. The

first option is to deny external I/O (possibly depending on the

arguments).2 This preserves full recoverability if a violation

is detected, but may cripple functionality of the untrusted

program. The second option is to allow external I/O, but if

the program violates the policy after I/O has been executed,

recover locally by undoing all of its effects on the host. We

argue that this is the best any sandbox can hope to achieve.

VI. EVALUATION

In this section, we benchmark the performance of TXBOX

and evaluate its ability to sandbox substantial applications

and roll back the effects of malicious execution. In perfor-

mance tests, we compare TXBOX with the standard Linux

kernel (version 2.6.22.6) as well as the Linux kernel with the

Dazuko module (version 2.3.4) installed. Because TXBOX

uses Dazuko’s system-call hooking mechanism and char-

acter device interface, Linux kernel with Dazuko installed

is an appropriate baseline for measuring the overhead of

transactional execution and security checks on transactional

worksets. All experiments were performed on a server with

one quad-core Intel X5355 processor running at 2.66 GHz

with 4GB of memory, unless otherwise mentioned. We omit

the statistical variance, which is low in all cases.

For installing test policies automatically, we put all test

programs in a dedicated directory and register the policy

manager for the ON EXEC event so that its gets control

whenever a program from this directory is executed. The

policy manager installs the policy and instructs the enforcer

to put the sandboxed process into a forced transaction.

A. Performance

Micro-benchmarks. Table II shows the overhead of TXBOX

for individual system calls—including read, write, and

fork/exec—compared to the base Linux kernel with and

without Dazuko. The policy for all tests is BLACKLIST

WREGEX *I:1234* unless otherwise specified.

In most cases, the cost of transactional execution and

security checks—represented by the performance penalty

of TXBOX viz. standard Linux with Dazuko installed—is

negligible. The single exception is open. Note that open is

by far the worst possible system call for TXBOX, because the

TxOS kernel needs to create a shadow copy of the object and

add it to the transactional workset. The overhead of a single

open call is broken down in Table III; security enforcement

is responsible for less than 5%. In practical applications, the

cost of open will be amortized over many system calls.

2It may also be possible to make decisions specific to a network protocol
such as DNS or HTTP. This requires the monitor to accurately mirror
protocol state, which is hard in general and prone to the same semantic
gaps that allow malicious processes to exploit incorrect mirroring of kernel
state in system-call monitors.
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Table II
SYSTEM-CALL MICRO-BENCHMARKS. TIMES SHOWN FOR THE FIRST

FOUR ROWS ARE AVERAGES OF WALL-CLOCK TIMES OVER 100,000
RUNS FOR 10 DIFFERENT SETS. TIMES SHOWN FOR FORK AND

FORK+EXEC ARE AVERAGES OF WALL-CLOCK TIMES OVER 10,000
RUNS FOR 10 DIFFERENT SETS.

Syscall
Kernel

Linux Linux+Dazuko TXBOX

getuid 0.08 µs 0.08 µs 1.00× 0.08 µs 1.00×

open 1.53 µs 1.62 µs 1.06× 4.72 µs 3.09×

read 0.27 µs 0.27 µs 1.00× 0.27 µs 1.00×

write 0.27 µs 0.27 µs 1.00× 0.32 µs 1.18×

fork 82.7 µs 82.8 µs 1.00× 83.4 µs 1.01×

fork+

exec

136.7 µs 136.7 µs 1.00× 138.9 µs 1.01×

Table III
BREAKDOWN OF PERFORMANCE OVERHEAD FOR OPEN.

Cause Time

open 1.53 µs

System-call interposition (Dazuko) 0.09 µs

Transactional overhead 2.98 µs

Policy overhead 0.12 µs

Total 4.72 µs

Application benchmarks. We evaluated TXBOX on gzip,

make, and PostMark. PostMark (version 1.51) is a file-

system benchmark which simulates the behavior of an email,

network news, and e-commerce client. Evaluation on larger

applications can be found in Section VI-B.

Table IV shows the slowdowns for gzip and make. For

gzip, which does not involve many file-system operations,

the overhead of TXBOX is negligible (1.007×). For make,

Table IV
TIME TAKEN BY GZIP TO COMPRESS A 4 MB FILE AND BY MAKE TO

COMPILE TWO SOURCE FILES WITH POLICY BLACKLIST WREGEX
*I:1234* ON TXBOX AND LINUX. TIMES SHOWN ARE AVERAGES OF

WALL-CLOCK TIMES OVER 100 RUNS.

gzip make

Linux 0.0401 sec 0.145 sec

Linux+

Dazuko

0.0403 sec 1.004× 0.145 sec 1.00×

TXBOX 0.0404 sec 1.007× 0.177 sec 1.18×

Table V
POSTMARK BENCHMARK RESULTS IN FILE-SYSTEM TRANSACTIONS

PER SECOND WITH POLICY BLACKLIST WREGEX *I:1234*. THE

NUMBER OF FS-TRANSACTIONS IS SET TO 100,000. POSTMARK IS

CONFIGURED TO USE NON-BUFFERED I/O FOR ALL THE TESTS.

Linux 8411 FS-transactions/sec

Linux+Dazuko 7692 FS-transactions/sec 1.09×

TXBOX 16666 FS-transactions/sec 0.50×

which involves more file-system operations than gzip, the

overhead is 1.18×. On the other hand, PostMark benchmark

involves a large number of file-system operations and repre-

sents the worst-case scenario for TXBOX because it requires

a large number of shadow objects to be created. Furthermore,

because the transaction can only be committed once the

PostMark benchmark calls exit, TxOS kernel needs to keep

track of all shadow objects until the end of the program.

Performance results for the PostMark benchmark are

shown in Table V. They are presented in terms of file-system

transactions per second (we refer to them as FS-transactions

to avoid confusion with system transactions). TXBOX results

in a factor-of-2 speed-up (represented in the table as 0.5×

slowdown) due to the fact that the transaction commit groups

all writes and presents them to the I/O scheduler all at once,

thus improving disk arm scheduling.
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Figure 3. Time spent in kernel mode (as reported by “time”) for a simple
program which opens 100 existing files, as a function of the policy size.
Times shown are averages over 10 runs.

Scalability. To evaluate the scalability of TXBOX, we built

a simple application which opens 100 existing files and

measured how its runtime varies with the increase in the size

of the policy (the number of inodes included in the policy).

In this test, we enforce a policy which is a conjunction of N

statements, each of which is a blacklist on a single inode. We

run this test on a laptop with an Intel Core Duo 2.00 GHz

CPU and 2 GB RAM. The results are shown in Figure 3.

I/O-intensive applications. Because transactional semantics

cannot be preserved over external I/O, the security monitor

must be invoked before allowing any system call which

performs external (e.g., network) I/O. The call is then exe-

cuted outside the current transaction. For example, consider

a process making the following sequence of calls:

fd = open("foo",..)

read(fd, ..)

sockfd = socket(..)

sendto(sockfd,..)

close(sockfd)
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close(fd)

..

Because sendto performs network I/O, TXBOX checks if it

matches any DENY primitive in the current policy. If yes, the

call is denied. If not, the monitor is invoked twice to check

if the process violates any BLACKLIST or WHITELIST:

TX BEGIN

fd = open("foo",..)

read(fd, ..)

sockfd = socket(..)

CHECK TX POLICY VIOLATION

NONTRANSACTIONAL sendto(sockfd,..)

close(sockfd)

close(fd)

..

CHECK TX POLICY VIOLATION

TX END

To measure the performance implications of multiple

invocations of the policy decision engine on network-I/O-

intensive workloads, we sandbox wget in TXBOX and use it

to download different large files from the Internet. TXBOX

is configured to execute the following system calls non-

transactionally: sendto, recvfrom, connect, send, recv,

ioctl, read (from a socket) and write (to a socket). Even

though ioctl does not perform any external I/O, it cannot

be executed inside a transaction with the version of TxOS

we are using in our prototype implementation of TXBOX.

This is not a fundamental limitation; in the latest version of

TxOS, ioctl codes are whitelisted on a case-by-case basis.

After opening a socket, wget reads a chunk of data from

the socket and writes it to the target file. This is the worst-

case setting for TXBOX. The results are in Figure 4. In all

tests, wget runs on a laptop with an Intel Core Duo 2.00

GHz CPU and 2 GB RAM. System time (i.e., time in the

kernel) for wget increases by 30-40% when running inside

TXBOX and the overall download time increases by 1-40%.

Overhead for trusted applications. Because TXBOX

isolates transactional applications from non-transactional

applications, the latter incur a performance overhead to

check for conflicts with transactions. When system trans-

actions are used for sandboxing, the overhead for trusted,

non-sandboxed applications is modest. The average non-

transactional overhead is 44% at the scale of a single system

call on TXBOX, using the same microbenchmark described

in [48]. In the context of a larger application, however, these

overheads are amortized across other work. For instance,

compiling a non-transactional Linux kernel in TXBOX incurs

an overhead of less than 2% compared to unmodified Linux.

B. Functionality

Creating files in a protected directory. We downloaded

the source code of the vim editor and configured it to

Figure 4. Overhead of TXBOX for different sizes of files retrieved by
wget (time spent in user-land is minuscule and not visible in the graph).
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Figure 5. FFmpeg’s running time in TXBOX with policy BLACKLIST
WREGEX *I:1234* and Linux (lines overlap).

install in /usr/local and compile using make. Next,

we ran “make install” in a sandbox with the BLACK-

LIST WREGEX *I:164564* policy where 164564 is the

inode number of the directory /usr/local/bin. “make

install” actually copies files to multiple directories, such

as /usr/local/share, /usr/local/bin, etc. Our

policy only designated /usr/local/bin as the protected

directory, so we were testing the ability of TXBOX to

correctly roll back all of the sandboxed process’s effects

on the system, not just those on the forbidden directory.

Execution of “make install” resulted in a violation and

TXBOX correctly rolled back its effects on all directories,

restoring the entire usr/local to its original state.

Malicious MIME handler in a browser. We created a

‘tarhandler’ which reads the sample file from the pro-
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Figure 6. FFmpeg’s memory usage in TXBOX with policy BLACKLIST
WREGEX *I:1234* and Linux. The increased memory usage is due to
maintaining the transactional workset.

tected directory /home/secret and writes out its contents

into /tmp/foo. We registered ‘tarhandler’ with the lynx

browser for MIME type ’application/x-tar’ and installed the

BLACKLIST WREGEX *I:183145* policy, where 183145
is the inode number of /home/secret. The browser

correctly executed in the sandbox with full functionality,

but after ‘tarhandler’ read from the forbidden directory, all

changes to /tmp/foo were rolled back.

Multimedia converter. To simulate the effect of a malicious

multimedia converter trying to write to unrelated files in a

user’s home directory, we configured ffmpeg, a popular open-

source codec, to create output files in the /home/user1/

directory. We created a sandbox with the BLACKLIST

WREGEX *I:181064* policy, where 181064 is the inode

number of /home/user1. When ffmpeg tried to write to a

file named ’output.avi’ in /home/user1, TXBOX detected

a policy violation and reverted all changes made by ffmpeg to

output.avi. Performance overhead of sandboxing FFm-

peg is shown in Figs. 5 and 6, where memory overhead is

computed as the difference between the total cached memory

before each execution and the total cached memory before

committing the transaction.

JavaScript engine. To evaluate TXBOX on a complex appli-

cation, we use the Google V8 benchmark (version 2) [28] on

the SpiderMonkey JavaScript engine (version 1.8.0) running

inside TXBOX. JavaScript engines are designed to ensure

that an untrusted script has access only to limited system re-

sources (files, system calls) needed for its correct operation.

They are, however, fairly complex programs and can suffer

from vulnerabilities (e.g., buffer overflows) which may be

exploited for arbitrary code execution [39, 61]. Executing the

engine inside a transaction can help ensure that all system

accesses by untrusted JavaScript are confined even if the

engine is buggy. Furthermore, additional policies can be

enforced. For example, to prevent any script from contacting

Table VI
GOOGLE V8 JAVASCRIPT BENCHMARK SCORES FOR THE

SPIDERMONKEY ENGINE. THE POLICY IS WHITELIST WREGEX
(S:1:X.Y.Z.W)*. HIGHER SCORES MEAN BETTER PERFORMANCE, i.e.,

LESS EXECUTION TIME. AVERAGES ARE CALCULATED USING

GEOMETRIC MEAN AS SUGGESTED IN THE BENCHMARK.

Test w/o TXBOX with TXBOX

Richards 25.6 25.2

Deltablue 30.2 29.9

Raytrace 53.2 51.9

EarlyBoyer 83.4 83.1

Avg. score (GM) 44 43.2

known malicious domains or to enforce the same-origin

policy from outside the potentially buggy JavaScript engine,

the administrator can install a blacklist or whitelist policy

on the destinations of network connections.

The results of executing SpiderMonkey inside TXBOX are

in Table VI. These tests were performed on a laptop with

an Intel Core Duo 2.00 GHz CPU and 2 GB RAM. In all

tests, the overhead of TXBOX is negligible (less than 5%).

On-access anti-virus scanning and parallelization of se-

curity checks. Anti-virus scanners are among the most com-

mon tools used to prevent spreading of malicious programs.

They primarily use signature matching to detect viruses. The

scanner maintains a database of signatures for known viruses

and searches for matching patterns in programs and files.

An anti-virus scanner can be activated manually by the

user who requests to scan a specific file or directory. The al-

ternative is transparent, on-access activation when a program

is executed or a document is opened. This often imposes a

significant performance penalty because the program cannot

start executing until the scan is finished.

TXBOX makes computationally intensive on-access anti-

virus scanning practical by speculatively executing untrusted

applications and loading suspicious documents inside a

sandbox, while performing a concurrent scan. Many virus

detection methods, including string matching, filtering, and

algorithmic scanning, can be executed in a parallel thread

(more sophisticated methods may require access to transac-

tional state—see Section VII). If the suspicious application’s

interactions with the system cause no conflicts with other

processes and the scanner thread does not find any problems,

then the transaction is committed and the application can

continue from the point where scanning finished.

We carried out several experiments to demonstrate how

parallelizing security checks improves performance (our

approach is substantially different from Nightingale et

al. [40]—see Section III). For gzip and PostMark, control is

passed to the policy manager whenever a file is opened. The

manager then runs the ClamAV anti-virus scanner on this

file. In standard Linux with Dazuko, the manager blocks the

program until the scan is finished. In TXBOX, the manager
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Table VII
PERFORMANCE OF GZIP WITH CLAMAV ANTI-VIRUS ON-ACCESS

SCANNING OF FILES WHENEVER THEY ARE OPENED. TIMES SHOWN

ARE AVERAGES OF WALL-CLOCK TIMES OVER 100 RUNS.

Input file size

4MB 400MB

Dazuko 0.14s 3.720s

TXBOX 0.203s 1.45× 3.718s 0.99×

lets the program continue inside the sandbox while the anti-

virus scan is being performed.

Performance for gzip is shown in Table VII. When the

amount of data handled by gzip is small (4 MB), the

overhead of the transactional mechanism dominates. As

the amount of data increases, the transactional overhead is

compensated by performance gains from parallelization.
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Figure 7. Performance of PostMark with ClamAV anti-virus on-access
scanning of files whenever they are opened. We use non-buffered I/O and
set the number of file-system transactions to 100,000.

For PostMark tests, we use a multi-threaded policy man-

ager (Fig. 7). As we increase the number of threads, perfor-

mance of TXBOX increases at a fast rate while performance

of Linux+Dazuko remains roughly the same. With 4 threads

TXBOX is 2.3 times better than Linux+Dazuko.

VII. LIMITATIONS

Kernel-based security monitor is vulnerable to kernel at-

tacks. Like any OS-based security enforcement mechanism,

including existing system-call monitors, TXBOX is intended

to provide security against malicious user-level code. If the

OS kernel is compromised, malicious code can potentially

disable TXBOX or interfere with its operation. Defenses

against kernel-based malware are outside the scope of this

paper, but, in general, maintaining integrity of security

enforcement in the face of kernel attacks requires a source of

trust outside the OS, such as provided by trusted hardware

(e.g., [43, 50]) or a virtual machine (e.g., [44, 57]).

Transactional semantics may change the behavior of

sandboxed processes. One possible side effect of running

every untrusted process inside a TXBOX sandbox is that

an access to a shared resource by a benign sandboxed

process may fail due to a transactional conflict with another

sandboxed process (see Section IV). This usually indicates a

race condition, which may very well be a problem by itself.

Furthermore, we expect that in a normal execution, only

untrusted applications are sandboxed and thus the number

of sandboxed processes on the host machine is fairly small.

TxOS has an auto-retry mechanism which, if set, attempts

to re-execute the failed transaction transparently to the

process. The number of retries is a configurable parameter.

If the transaction is aborted due to a security violation, it is

not re-started automatically (see Section V-A).

A secondary concern with automatically wrapping appli-

cations in system transactions arises when the application

itself uses system transactions for internal synchronization.

Currently, TXBOX only provides flat nesting; a nested

transaction uses the same working set as its parent. TXBOX

could isolate nested sibling transactions from each other with

fairly straightforward extensions to the system transaction

mechanism, which we leave for future work.

Transactional state is not shared. Our parallelization

experiments use ClamAV [9], a relatively simple scanner

which looks for bit patterns associated with known viruses.

More sophisticated anti-virus tools may need to observe

the execution of the program in order to decide whether

it is malicious or not. To run such tools in parallel with

the sandboxed process, TXBOX must share the transactional

state of the process with the tool. This is not supported in

our current prototype but presents no conceptual difficulties.

Colluding malware may evade security policies. Any non-

trivial policy that involves more than one system call may be

violated by two or more colluding malicious programs which

execute on the same host independently. Consider a very

simple policy: “a program is malicious if it makes system

call A followed by system call B.” The first malicious

program makes call A and saves its internal state in a

local file. The second program reads in the state of the

first program and makes call B, achieving the same effect

as a single violating program. Obviously, more complex

policies can be bypassed by a similar attack. No sandboxing

mechanism can reliably prevent this.

Processes that generate very large worksets are killed.

The sandboxed process may try to bloat its transactional

workset by performing irrelevant operations. If TXBOX runs

out of memory to store the workset of any process, the

process is killed and the transaction is rolled back. TXBOX

does not currently support swapping out a process’s workset

as this may open up opportunities for denial of service.

This approach also prevents sandboxing very long-lived

applications because TXBOX cannot tell the difference be-
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tween a program that has been running for a long time and

legitimately accumulated a large workset and a malicious

program which is deliberately bloating its workset.

An alternative approach is to perform intermediate com-

mits. When the workset of the sandboxed process gets too

big, TXBOX checks if the process has already violated

the sandboxing policy. If so, the process is killed and the

transaction is rolled back. If the policy is not (yet) violated,

the transaction is committed and a new one started, but

TXBOX keeps trace information from the old transaction

and merges it into the trace of the new transaction.

This approach preserves the ability of TXBOX to detect

violations that span the commit point, but sacrifices full

recoverability when a violation is detected because the

process can only be rolled back to the last commit point. This

is a strict generalization of standard system-call monitoring,

since the latter commits on every system call.

VIII. CONCLUSIONS

Increasing popularity of multi-core architectures is driving

the development of new mechanisms for managing con-

currency in software applications. One such mechanism is

system transactions, which allow a sequence of updates to

the system state made by one process to be performed atom-

ically, in isolation from other processes. We demonstrate

that system transactions provide a powerful primitive for

implementing secure, efficient sandboxes for untrusted code.

TXBOX, our prototype sandboxing system based on a

modified Linux, enables speculative execution of untrusted

programs and automatic recovery from their harmful effects.

By inspecting system calls made by the program and its ac-

cesses to system resources, the TXBOX security monitor can

determine whether the programs satisfies the desired security

policy. Supported policies include system-call automata, as

well as data-flow and access-control policies spanning mul-

tiple system calls. If a security violation is detected, TXBOX

aborts the transaction wrapping the malicious program, and

the system is restored as if the process never executed.

Unlike many system-call interposition tools and monitors

based on speculative execution, TXBOX cannot be circum-

vented by TOCTTOU (time-of-check-to-time-of-use) and

other concurrency attacks, nor by attacks that exploit incor-

rect mirroring of the kernel or file-system state, nor by split-

personality malware whose behavior changes depending on

whether it is instrumented with security checks or not.

TXBOX combines kernel-based enforcement with user-

level policies. This yields low performance overheads, en-

abling the use of TXBOX in production systems, especially

ones that already need system transactions to manage con-

current access to system resources. TXBOX also improves

the performance of on-access anti-virus scanning on multi-

core processors by executing the untrusted application on

one core and performing the scan in parallel on another core.

As system transactions increase in popularity and support

becomes available in commodity operating systems, security

enforcement mechanisms should take advantage of them. We

view TXBOX as a step in this direction.
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