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Abstract—Choosing the security architecture and policies for
a system is a demanding task that must be informed by an
understanding of user behavior. We investigate the hypothesis
that adding visible security features to a system increases user
confidence in the security of a system and thereby causes users
to reduce how much effort they spend in other security areas.
In our study, 96 volunteers each created a pair of accounts,
one secured only by a password and one secured by both a
password and a fingerprint reader. Our results strongly support
our hypothesis—on average. When using the fingerprint reader,
users created passwords that would take one three-thousandth
as long to break, thereby potentially negating the advantage two-
factor authentication could have offered.

Index Terms—user study, security policy, risk compensation,
two-factor authentication

I. INTRODUCTION

Passwords remain the weakest component of many im-

portant security systems, so there is a concerted push from

many directions to supplant or supplement passwords with

less-fragile security measures. While this push has had some

effects, particularly in environments that require more security,

it has failed to replace passwords—the vast majority of com-

puter users still use passwords on a day-to-day basis. Since

the security of passwords relies so heavily on user behavior,

studies that empirically examine patterns of password creation

and use remain important in the evaluation of security policies.

Most empirical studies of user password behavior provide

baseline information about how users create, remember, or use

passwords [1]–[3] or the kind of passwords users create [4].

Some offer practical results based on comparing user groups

given different sets of advice [5] or by persuading users to

use stronger passwords [6]. A larger number of user studies

have been done on alternatives to passwords, such as graphical

passwords [7] or biometric authentication [8], though most of

these have studied usability or subjective preferences rather

than the security-related behavior of the users. Our study fills

a void in the examination of a multi-factor authentication

scheme by reviewing how users behave in such a system

compared to how they behave in similar systems that use only

single-factor authentication.

When policymakers decide to add to or improve upon

password authentication rather than replace it with a different

authentication scheme, the default assumption is that the ad-

ditional layer or layers of security are essentially independent

of other layers; that adding a security mechanism to a system

will not decrease the overall security of that system. From

a software perspective, this assumption is generally true and

can usually be verified. However, the security of a system

is inextricably linked to and dependent upon the behavior of

the authorized users of that system. If adding visible security

features increases the level of confidence those users have in

the security of the system, they may decide to expend less

effort in behaving securely. This is an outcome predicted by

risk compensation theory [9] or risk homeostasis theory [10],

but has not been previously tested in the arena of computer

security.
Our approach to partially address this question was to offer

volunteers a monetary incentive to secure accounts they were

told were going to be attacked. Each volunteer was asked to

create two accounts with distinct passwords: one protected

only by a password and one protected by both a password

and a fingerprint reader—the most commonly used biometric

for authentication. Users were given $5 to divide as they saw

fit between the two accounts and told that they would receive

whatever money was in the accounts so long as that account

was not compromised by the end of the study.
In addition to noting the evidential measure of security each

user assigned to their accounts (the ratio of money put in each

account), we asked the users directly about their confidence in

the security measures protecting the two accounts. Finally, we

asked some demographic questions in order to assess potential

differences between user groups. We also observed users to

see how many wrote down their passwords, but these data

are unpaired to user accounts, so we cannot draw conclusions

from it.
In order to analyze the results of our study we measured the

strength of user passwords using a hybrid metric that attempts

to estimate the number of guesses needed to guess each

password. We used entropy measurements in this metric, but

derived it primarily from the performance of several different

password-cracking techniques on each password. Using this

measure of strength, we found a large variance for how

different each participant’s pair of passwords was. However,

across our entire study, the passwords connected to fingerprint-

using accounts were 1
2980

th
the strength of passwords for the

password-only accounts. The decrease in strength was even

more marked for several subgroups within our study, and

we found strong correlations between a decrease in password

strength and an expectation of the fingerprint reader providing
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good security.

II. PREVIOUS WORK

As mentioned in the introduction, many studies have been

done to establish the baseline behavior of users, including the

outdated but early study presented by Zviran and Haga [11]

and the extremely large study of over half a million users

by Florencio and Herley [1]. Moving from those baselines

to studying the effects of other policies on user behaviors,

a number of empirical studies have determined factors that

may improve the quality of user passwords, such as the study

of 288 Cambridge Natural Science first-year students [5].

Other empirical studies have developed systems to improve

the passwords users produce, such as the Persuasive Text

Password system developed by and tested on 83 students of

Carleton University in Ottawa [12].

However, the evaluation of policies designed to improve

user passwords is significantly different from the purpose of

our work, which aims to determine the unintentional and

potentially negative consequences of policies and security

architecture. Research has been done into unintended negative

consequences of password policies [13], determining that

attempts to increase security can have adverse affects [14];

this aligns with overcompensation which potentially reduces

or eliminates the effectiveness of security improvements [15].

An excellent analysis of different combinations of authen-

tication techniques is given by O’Gorman [16]; however, they

model each technique in isolation and treat combinations of

them as an independent combination. For this reason, our

research raises warnings related to their concluding advice in

the areas where they recommend two-factor authentication.

In the area user-focused security, there is limited data and

analysis of user motivation regarding their security posture

and behavior. Weirich and Sasse [17] report the results of a

series of user interviews about password behavior and develops

suggestions of how to phrase arguments to persuade users to

adopt better security behavior. Stanton et al. [18] likewise

interviewed users for the purpose of discovering the range

of user security behavior in a wide variety of contexts—not

just in password choice and use. The laboratory-based users

studies that the authors are familiar with mostly attempt to

test new security systems, such as the evaluation of Déjà Vu

by Dhamija and Perrig [19] and one of the evaluations of the

PassPoints system such as done by Wiedenbeck et al. [20].

On the other hand, our hypothesis is intricately tied to

the theory of risk compensation in psychology, that when

people feel less apparent risk they will be less cautious and

expend less effort to ensure their own security. Taken to an

extreme, risk homeostasis theory proposes that people will

modify their risk-taking behavior to always achieve the same

level of risk, regardless of the safety of the environment.

These theories have been extensively studied in various areas

of human behavior [15], [21]–[23]. These theories have also

been applied to computer security as theoretical applications

[24] and explanations [25] or through qualitative surveys [26].

We seek to extend this by documenting a well-controlled

experiment to determine the presence and strength of this

effect in password choice.

III. METHODOLOGY

Our experiment consisted of a user study conducted in a

laboratory setting that asked users to create two accounts each;

we recorded the two passwords each user created. We describe

the design of the user study itself in Section III-A. For analysis

of the collected data, adequately measuring the strength of

passwords collected in this study was of primary importance.

We discuss what such measurement means in Section III-B.
The methods that we decided to use in assessing the strength

of the collected passwords included various modes of John the

Ripper, discussed in Section III-D, and two analytic measures.

Our use of John the Ripper required password dictionaries

described in Section III-C; these password dictionaries were

also used to establish a baseline expectation about the dis-

tribution of password strengths and are therefore themselves

relevant in our later analysis. The analytic measures we used to

gauge password strength were class size estimation, discussed

in Section III-E, and entropy, discussed in Section III-F.

A. Experimental Procedure

In order to determine how our subjects chose passwords in

different security environments, we wrote a desktop applica-

tion that guided each volunteer through an account creation

process, similar to creating an account on a website. Each

volunteer was asked to create two accounts: a “standard”

account secured only by a password and a “biometric” account

secured by both a password and a fingerprint. The order

that volunteers created accounts was randomized between

subjects. After they had created both accounts, they were asked

questions to assess how secure they felt the two accounts were,

as well as questions regarding their security background.
1) Recruitment: After we received approval from our In-

stitute Review Board (IRB) to run a psychological study with

human participants, we began recruiting students. Our vol-

unteers were recruited primarily through fliers posted around

our college campus offering $5 to participate in an experiment

to test hackers. Some volunteers heard about our experiment

through word of mouth, and toward the end of the experiment

we set up a booth with a large poster outside the dining hall

in the student union building.
2) Objective and threat: In order for our study to obtain re-

alistic passwords, before creating the accounts, each volunteer

was given instructions indicating the following:

• The researchers were going to put $5 in total into the

accounts created by each volunteer.

• The accounts would be attacked by a group of hackers

who would attempt to gain access to each.

• Any money in any account the hackers compromised

would go to the hackers.

• Money remaining in a volunteer’s account after one week

would be given to the volunteer.

• Passwords, compromised or not, would be released at the

end of the study, so users should avoid using an existing

password.
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3) Phase I: Our first group of 20 volunteers was given an

account number of the form 12-3456. They were told that they

would need to remember their account number to log in at the

end of the experiment.

Observing the participants, 19 of the first 20 volunteers

wrote down their password when they wrote down their

account number. Since writing down passwords was not a

behavior we had intended to cause, we revised the experiment.

4) Phase II: The remaining 74 volunteers were asked

instead to create a username along with their password.

Many users still wrote down their password and/or username,

approximately 54%, but far fewer than in Phase I.

5) Process: The account creation process required that the

users enter the same password into two text boxes (obscured by

dots) and checked that they were identical before proceeding.

The only password requirements were that the password box

be non-empty and that the password consist exclusively of

printable ASCII characters other than newlines or carriage

returns. Additionally, the account that purported to use a

fingerprint scanner required that the user swipe his or her

finger along a provided fingerprint scanner. Although this is

an unrealistic behavior, we displayed a scanned fingerprint on

the screen as visual feedback when the user correctly scanned

his or her fingerprint. All users that were asked assumed (as

intended) that the displayed fingerprint was the scan of their

own finger; in fact it was a randomly chosen scan of one

of the researchers’ fingerprints. No fingerprints were actually

collected as part of this study.

6) Evaluation: After each user finished creating both ac-

counts, he or she was asked to allocate $5 between the

accounts in whatever way he or she preferred. This was

intended to give us a practical measure of how confident each

user felt about the security of each account. Next, the user

was directly asked about the security of the accounts. Finally,

the user was asked a few demographic questions intended to

help us interpret group differences in the data.

7) Compensation: Users were asked to return to our lab

at least one week after they set up accounts to see if their

accounts had been compromised and get rewarded if the

accounts were intact. They were also told that they would need

to re-enter their password at this time to get paid. The only

reason for imposing the delay was to disguise the fact that all

volunteers would be paid no matter what (since there were no

actual hackers). Most students never returned to collect their

$5, indicating that the reward was not substantial for them

and was not the primary motivator in participating. There were

insufficient users who returned to collect their compensation to

determine whether there was any significant difference in their

security posture, as compared to those who did not return.

B. Password Rating

To evaluate differences in password choice, we developed a

numerical metric for rating the strength of passwords. Rather

than a single monolithic metric, we opted to use or model

several cracking techniques. For each technique, we estimated

how much time—relative to the computing power available—

that technique would take to guess or break each password.

Our final metric is formed by taking the minimum of all of

these, as any of them individually could be used by an attacker.

The strength of a password can be regarded as a function

of how many guesses a sophisticated attacker focusing only

on the security of the password itself (ignoring any other

aspect of the overall security system) would have to make

before happening upon the correct password. There are two

features which make this measure inherently variable; one is

very predictable, the other is very unpredictable.

System design is much more predictable in the variability of

password strength and reflects the degree to which the design

of the authentication system itself restricts the number of

passwords that can be tested per second. For example, system

design includes the choice of password-hashing algorithm, the

policy limiting login attempts, and how well password hash

databases are secured. Ultimately, system design strengthens

or weakens all passwords equally. Thus, any measure of

password strength should take system design into consider-

ation only as a constant factor. Since our analysis reflects

comparisons between passwords used on an arbitrary system,

we omit this feature.

Ordinality is much less predictable and reflects the order in

which passwords are guessed by any hypothetical attacker.

It may be efficient for a knowledgeable attacker to semi-

manually guess a series of passwords related to names, con-

tacts, dates, and interests known to be relevant to a target. In

most cases, it is worth testing against known password lists,

sorted by frequency of known usage. Even if neither of these

work, there are several independent methods of brute-forcing

passwords that result in different password orderings.

The difference that different password guessing orders

can make is significant and unpredictable. The password

“j_IGc5}7vTky(wQr” could be an exceptionally good

password, but by virtue of being printed here and possible

to index, it could end up in a wordlist less than one hundred

million words long, making it crackable in a very short amount

of time.

This principle also extends to other features commonly

associated with the strength of a password; for example, a

password that a user uses on multiple systems is inherently

weaker in each system than it would be otherwise, because

there is a potential risk of a first compromised account

affecting a second. However, this weakness through password

reuse is really an example of a knowledgeable attacker being

able to lower the ordinality of that password within his or her

guess sequence.

Despite the obvious impossibility of knowing in which

order an arbitrary attacker will guess passwords, ordinality

almost exclusively represents the strength of a password,

and any password-strength metric is an attempt to estimate

the ordinality of a potential password in a hypothetical but

representative list that an attacker might go through. We chose

to directly assess the index of passwords in various sequences

that an attacker might try and choose the minimum of all of
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these as a reasonably likely ordinal drawn from the distribution

of likely guess sequences. This metric has the advantage that

it should be no more than a small constant factor smaller

than the actual number of guesses an attacker would take.

It could be much larger, especially if the attacker has special

knowledge about a victim’s password, but should otherwise

be representative of real-world cracking attempts.

1) Online versus offline attacks: Our analysis implicitly as-

sumes that passwords created are vulnerable to offline attacks,

where attackers have, for example, access to the hashes of

the passwords they wish to crack. Most security schemes are

designed to prevent such an attack, including the kind of bank

service we were mimicking, but assuming that passwords are

only vulnerable to online attacks also assumes perfect imple-

mentation of additional security safeguards. In additional, we

should not assume only online attacks because many publicly

available dictionaries of passwords and password hashes were

originally obtained by compromising web servers. With so

many out there, we are forced to the conclude that online

services are quite often vulnerable to offline attack.

C. Password dictionaries

The first and easiest technique for most attackers is to try

testing known passwords, as drawn from large-scale account

leaks. Based on the demographics of the pool of volunteers

our study drew from, we used a dictionary of English words

(approximately 900,000 words) and combinations of English

words (48,400,000,000), but also obtained and used password

lists from famous phishing or SQL–injection related leaks,

including from MySpace, Hotmail, VKontakte and RockYou.

The MySpace list was originally published in 2006, after

an attacker created a fake MySpace login page and phished

tens of thousands of users. The attacker or attackers left the

server they were collecting passwords on unprotected, and

their list was compromised and later publicly posted. Our

version of this list contains 49,711 passwords, although not

all of these passwords actually belonged to users, since some

people recognized the phishing attempt and entered fake data.

Like other researchers [27], we make no attempt to distinguish

between the fake and the real passwords.

The Hotmail list was similarly collected from a phishing

attempt in 2009. The original list contains username and

password pairs from usernames starting with ‘a’ or ‘b’ and has

9,856 entries. Also in 2009, the social site RockYou.com suf-

fered a data breach. Since the site operators stored passwords

in plain text, the passwords for 32,603,387 users were exposed.

Lastly, 55,766 unique usernames and passwords were collected

from the Russian social networking site VKontakte.ru by the

trojan Trojan.Win32.VkHost.an, which redirected users of an

infected host to a phishing site whenever they attempted to

access the real VKontakte.ru.

We used these four lists to determine the strength of

passwords collected by our study and as a baseline for our

expectations of password strength. For the former purpose, we

also used the list published by Openwall [28], consisting of

more than 3,400,000 unique passwords, sorted by the expected

frequency of use.

D. John the Ripper

John the Ripper [29] is probably the preeminent password

cracking software. We employed three typical modes of using

John the Ripper. We spent approximately 24 hours running

each mode on the passwords we collected, and recorded the

number of guesses taken to get to each password in our set.
1) Mangling: John the Ripper has a “mangling” mode

where it takes passwords from an existing list and mangles

them according to a set of rules. This can be very useful for

specific modifications, such as adding “1” or “!” to the end of

each password, or replacing the letter “o” with “0”. Using all

the mangling rules dramatically expands the input password

list.
2) Iterative: John the Ripper’s “iterative” mode is capable

of brute-forcing all passwords of up to 8 characters drawn from

the set of non-whitespace printable ASCII characters. Under

normal operation, this is the default mode after the wordlist

provided to John has been exhausted. In our study, we used

it essentially in parallel with all the other modes. Although

all possible passwords are examined, the examination order

is somewhat unorthodox. For instance, the first five passwords

tested are (in order) 1952, sammy, stark, start, and stack, which

are by no means the most commonly used passwords.
3) Markov: There is now a “Markov” mode plugin for John

the Ripper that uses character digram frequencies 1 to build

a finite-state machine able to generate passwords according

to the Markov-chain estimate of their likelihood. Using the

Markov mode, John the Ripper can generate passwords of any

length, but the complexity of the password is bounded by the

frequency with which the digrams in the password appear in

the Markov-mode’s database, and passwords above a stated

complexity threshold will be skipped. This is theoretically

similar to the iterative mode, but more sophisticated and able

to generate more realistic and longer passwords.

Limiting the maximum password length of the Markov

mode or changing the maximum complexity of generated

passwords can result in a dramatically different password

generation order. So, for our purposes, it is worth taking the

index that results for each password, when the Markov mode

is run for that specific length, and with a maximum complexity

that exactly matches the password. This results in the smallest

set that is guaranteed to contain the password, and thus results

in the smallest reasonable estimate.
The mkvcalcproba utility, provided with the Markov

plugin, directly computes the complexity of each password (as

measured by its own generator), even for passwords with com-

plexity higher than the Markov mode can generate. For these

passwords that lie above the complexity that the Markov mode

of John the Ripper will generate, we take half the theoretical

number of such passwords as a reasonable estimate of how

many passwords the Markov utility would go through before

1A digram is two characters in sequence. Digram frequencies measure how
often a character follows the previous character in a corpus.
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getting the correct password. The number of passwords of less

or equal complexity is generated by the genmkvpwd utility,

but for large passwords the number it computes overflows the

64-bit integers it uses, so it is inapplicable to long or very

complex passwords.

E. Class size estimation

As a fallback analysis, we also provide a strictly analytical

measure that still represents a potential method of brute-

forcing passwords, but does not correspond to an actual

industry technique of password cracking.

For each password, we count the number of members it

has in each of five classes: lowercase alphabetic characters,

uppercase alphabetic characters, numerals, common symbols2,

and uncommon symbols3. If ci(p) is the count of characters

from class i for password p and si is the size of that class,

our artificial measure is

m(p) =
1

2

∏

s
ci(p)
i

(
∑i

j=0 cj(p)

ci(p)

)

.

This results in a measure that is always the same size

or smaller than the more naı̈ve estimation of s|p| where s

is the sum of the size of all the character classes that p

uses. Essentially, our analytic measure distinguishes between

an alphabetic password with a single digit repeated and an

arbitrary alphanumeric password of the same length. As an

example, the difficult password mentioned above in Section

III-B, p = j_IGc5}7vTky(wQr, has measure

3.8×1028 =
1

2
·267 ·264

(

11

4

)

·102
(

13

2

)

·71
(

14

1

)

·262
(

16

2

)

.

The measure is more intuitive when explained as follows:

it is the number of passwords formed by the characters from

one set in any order, multiplied by the number of ways to

insert all the characters from the second class, multiplied by

the number of ways to insert all the characters from the next

class, and so on. Our intention is to model the smallest class

that would be reasonably constructed and would contain the

password, and we assume that enumeration within that class

would happen on average halfway through.

F. Entropy

While all password entropy measures are estimates and must

be measured based on comparison of a password to a larger

sample space, we also found it useful to measure the entropy

of each password. The standard measure for entropy is

H(X) = −
∑

x∈X

f(x) log2 f(x),

where f is the probability mass function of X . This is what

is referred to as entropy and is measuring over a random

variable—an entire space, rather than points within that space.

2those with a frequency more than 0.05% in our database of leaked
passwords; these are ., !, _, -, *, space, and @

3other printable ASCII characters, 26 total

TABLE I
PARTICIPANT AGE

Age Number Percent

18–24 74 78.7

25–34 10 10.6

35–44 2 2.1

44–54 2 2.1

55+ 1 1.1

No answer 5 5.3

In the context of password strength, the information content

of x ∈ X , which is just log2
1

f(x) = − log2 f(x), is often

referred to as the entropy of that password. We continue to

refer to the information content of a password as its entropy

for the sake of consistency.

In the context of a password strength measure, we do

not know and can only estimate the value of f for any

given password. One memoryless approximation is to measure

individual character frequencies within a corpus. If it is known

that a character c occurs with frequency fc in a corpus,

each appearance carries log2
1
fc

bits of information, neglect-

ing conditioning upon other characters. Thus, by measuring

the frequencies at which each potential password character

appears, we can estimate the entropy of a new password as

I(p) =
∑

c∈p

log2
1

fc
.

Thus, the number of potential passwords with entropy less

than or equal to p is 2I(p), which is just the reciprocal of the

product of the individual character frequencies.

Entropy, at least by itself, is a poor measure of password

strength, as demonstrated by Weir et al. [30]. However,

entropy, especially when accounting for specific character

frequencies, is better than nothing. For passwords that we are

currently unable to crack it still gives us some information

about which passwords will be cracked sooner than others if

we continued to employ our cracking techniques.

IV. RESULTS

Ninety-six individuals participated in our experiment. Two

of these samples were rejected because the data our program

gathered was incomplete. Since subjects were not closely

monitored, we suspect that these two individuals did not finish

going through the program and closed it or left before the end.

A. Sample demographics

Our 94 samples consist mostly of undergraduate university

students, disproportionally drawn from the computer science

department. Thus, they are overwhelmingly young: 79% were

under 25 and 89% were under 35. Users were similarly well

educated: 89% had at least some college experience and we

expect that the vast majority of the 78% that reported “some

college” were pursuing an undergraduate degree. The answers

to the demographic questions are in Tables I, II and III.
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TABLE II
PARTICIPANT EDUCATION

Education Number Percent

No high school degree or GED 1 1.1

High school degree only 7 7.4

Some college 73 77.7

Bachelor’s degree 9 9.6

Master’s degree or higher 2 2.1

No answer 2 2.1

TABLE III
PARTICIPANT COMPUTER & SECURITY BACKGROUND

Background Number Percent

Do not often use computers 0 0.0

Use computers for Internet and email only 14 14.9

Heavily use computers, no coding experience 52 55.3

Design or build software, not in security 12 12.8

Familiar with internals of computer security 13 13.8

No answer 3 3.2

B. Analysis decisions

During the analysis of the data for this paper, we adopted

several conventions for the way we examined data. For ex-

ample, we found histograms to very poorly represent the

distribution of password strengths. Instead, we used kernel

density estimates to approximate a probability distribution of

the strength of passwords over a given group. In our testing,

we found that simple Gaussian kernels worked very well, so

we use Gaussian kernels throughout this paper. Furthermore,

we found that using canonical kernel bandwidths resulted in

satisfactory distributions that demonstrated neither over- nor

under-smoothing, so we avoided bandwidth tuning for each of

the distributions we looked at.

For many of the questions we sought to answer, we used

parametric hypothesis tests that impose restrictions on the data

they evaluate. In particular, we compared several data sets

with t-tests, which require that the data approximate a normal

distribution.

We earlier defined password strength to be the number of

guesses we expect an attacker to take to break a password.

For passwords successfully broken by any of our cracking

techniques, this number is exact in some sense—this is simply

how many guesses it took for us to break the password. For

passwords long enough not be cracked, this represents our best

guess as to how long it would have taken us, based on all the

information we have about the password.

Since password strength grows exponentially in terms of

password length, if password lengths were normally dis-

tributed, password strengths would be log-normally dis-

tributed. Although we expected such a distribution, we found

that the logarithm of password strength was still positively

skewed, as indicated in Figure 1.

The very large numbers used to describe such strengths

is awkward, so for the remainder of the paper we refer

Fig. 1. Password strength of control and experimental groups

Fig. 2. Logarithmic strength of control and experimental groups

to “effective length”. This is the base-10 logarithm of the

expected number of guesses needed to correctly guess the

password. This is a more easily interpreted metric; a password

rating of 7.5 takes approximately thirty million guesses (a

small number) to crack, while a password rated at 19.6 is

well out of the reach of the attacks we rated the passwords

against. This can also be intuitively thought of as representing

a perfectly random base-10 password of this length.

However, for the purposes of quantitative comparison be-

tween groups of passwords, we additionally take the natural

logarithm of effective length, resulting in distributions like

those in Figure 2. These distributions are not normal either, but

they are reasonably well balanced; the Anderson-Darling test

for normality gives p-values of 0.4851 and 0.1920 respectively

for the two distributions in Figure 2, so we have no strong

reason to treat them as non-normal. Many of the graphs in this

paper use this more balanced metric; their axes are labeled as

the logarithm of effective length.

For the remainder of this paper, p-values reported for

testing when two groups are drawn from the same distribution

are computed using Welch’s Two Sample t-test, using the

ln ◦ log10 form of measuring strength. Intra-subject compar-

isons use a Paired t-test, but over the log10 of the strength,

since intra-subject differences in that measure do appear to

be symmetric and approximately normally distributed. For the
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TABLE IV
EXAMPLE PASSWORDS

Percentile Study example MySpace example

10 cab1007 jordan

25 d3rp217857 melch.

50 1Yes27Miss77 lillius4

75 anamishaizfalous9594 hunter345

90 _3_@_m!nEr@Ls_b(uE Imperitor1

hypotheses we examine in this paper we found a wide range of

p-values, from p > 0.4 to p < 10−15. Note that while lower p-

values indicate greater statistical significance, and in particular

p < 0.05 is often used as a cutoff for deciding whether or not

to accept a hypothesis, p-values scale to both the sample size

and the effect strength, both of which are different among

our different hypotheses. Thus, there are some hypotheses we

expect are true but we cannot accept given our sample sizes

and hypotheses with very low p-values that are associated with

a small enough effect that they should not be taken to represent

important findings. In other words, alternate hypotheses that

we appear to support with p = 0.001 (as the only alternate

hypothesis) should not be taken to be ten times the significance

of other alternate hypotheses we appear support with p = 0.01.

To mitigate concern surrounding the transforms we used

on the data and their distribution, we evaluated our findings

with both parametric and non-parametric statistical tests. In all

cases, the resulting p-values were not meaningfully different—

they did not change any conclusions. Because the non-

parametric tests cannot assist in building confidence intervals,

we usually omitted mention of them except in cases where

reviewers specifically asked about alternate tests.

C. Password strength

The passwords collected during our study differ dramati-

cally from passwords sampled from other sources, e.g., the

large MySpace leak. For instance, we rate the passwords in

Table IV as the 10th, 25th, 50th, 75th and 90th percentiles

from our study and the famous MySpace phishing leak re-

spectively.

It should be evident that the passwords our study col-

lected are dramatically stronger than what we expected to

collect. More descriptively, Figure 3 overlays estimations of

the probability distributions of the password strength over the

Hotmail, MySpace and RockYou datasets, comparing them

to the estimated probability distribution of password strength

found in our study. As in Figure 2, these plots use the natural

logarithm of effective password length.

It is also worthwhile to note that even the weaker passwords

associated with the fingerprint-using accounts almost always

(95% of the time) still exceed the minimum strength recom-

mended by Florêncio et al. [31] for web passwords. In many

environments (such as general web usage), passwords stronger

than this are superfluous, and add an unnecessary burden to

users.

Fig. 3. Password strength from different datasets

There is really no possibility that the passwords in our study

could have been drawn from one of the other distributions

by coincidence; in all cases, the p-value for that hypothesis

is less than 10−15. The variance is dramatically larger, and

the average difference in strength is incredible. The closest

dataset is the Vkontakte set, which has an average rating

“only” 7.14 less than the passwords in our study—a nearly

fourteen million fold difference, whose relative smallness may

be best explained by the fact that it is a primarily non-English

set of passwords that are less easily cracked by the tools we

used. The other datasets compare as 8.65, 8.97 and 9.62 points

weaker than the dataset collected in our study for Hotmail,

MySpace, and RockYou respectively. The latter can perhaps

be explained in being somewhat larger because, unlike the

other sources, RockYou did not require both letters and digits

in the passwords of their users (Hotmail and MySpace did

prior to their famous leaks).

Although we were unable to conclusively demonstrate that

any of these factors was the cause of the difficult passwords

we observed, we believe that there are a few relevant factors

at hand.

1) Demographics: Our users were by and large more

computer savvy and more familiar with computer security

than a random sample of the Internet-using population, at

least as compared to our password sets and reports from other

password studies. This is especially true in comparison to some

of our test sets, such as the MySpace list, which contains only

passwords of people who fell prey to a phishing attack. As

such, it is not surprising to see better-constructed passwords

that are longer, more complex and less vulnerable to guessing

than we would see in an unbiased sample.

However, using passwords too long or too complex to

remember is not a hallmark of good password habits. Since so

many of the passwords we collected are too long and contain

too many special characters to remember or type in easily, we

believe that demographics play a smaller role than the other

factors as will be discussed next.

2) An obvious threat: Adams and Sasse [32] propose

that the fundamental problem with password security is that

security is an obstacle to achieving tasks. In standard use
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cases, passwords are seen as an impediment to productivity;

unless users have a very strong drive to protect the specific

resource they believe they are protecting (a MySpace user

page, for instance) and a strong belief that it is or will be under

attack, users are disinclined to use any password more difficult

than the minimum required. These results are confirmed by

Florencio and Herley [1] and backed up by an economic

analysis by Herley [14].

Our experiment did not mirror this presumption; users were

told that they were protecting a bank account from a specific,

concerted attack by a group of hackers. Security was their

primary objective, not an ancillary obstacle. More over, instead

of having to log into an account many times over an extended

period of time, users were only required to remember their

passwords for one week and log in once at the end of the

period.

We believe this is the most significant factor and explains

why a significant majority of the users chose a password they

did not expect to remember—we noted that 68% of users

visibly recorded their password in some way: some wrote on

their hands or arm, some on paper, and most in their phones. A

small number of users had lost the password they had written

down by the end of the week and none of these were able

to log back into their accounts; if these users had intended to

memorize their passwords, they failed to do so before logging

back into their accounts.

3) Competition: In addition to having an obvious threat, the

experiment provided users with a well-defined competition.

Each user believed he or she was directly competing against

a group of hackers. Discussions we overheard from users that

had just finished creating their accounts indicated that many

decided they were also in competition with the other volunteers

of the study; we heard sentiments such as “I bet my password

is better than yours!” and “There’s no way the hackers are

going to break into my account!” from several users. The $5

we offered users is a paltry sum that failed to convince many

users to volunteer, but the competition itself seemed to be a

strong motivator once they had agreed to take part.

These final two observations, if true, provide interesting

material for potentially convincing users to create and use

stronger passwords. Regardless, we think that our general

results are valid because we compare subjects in the same

environment given the same objective to each other, rather than

comparing the passwords that our subjects created to those in

our test sets. In this comparison, we still find striking and

statistically significant differences.

D. Group comparisons

Treating the set of passwords collected from volunteers as

two separate groups, a control (the password-only accounts)

and an experimental group (the accounts using a fingerprint),

rather than as paired samples, we can determine substantial

differences. Recall that users were required to use different

passwords. One significant aspect of this is that we can use

only the results of the first of each pair of account creations,

avoiding a potential bias that might be introduced through

different behavior on the second account creation. Thus, we

compare the 44 volunteers who were randomly chosen to first

create a fingerprint-using account against the 50 who first

created a password-only account. The difference in password

strength, which is a function of length, between their first

account created is visible in Figure 1, although the difference

in means between the two groups may seem minimal. In fact,

we can assert that the distributions are different with p < 0.003
(against the null hypothesis of the means being equal).

The strongest position we can assert from a strict group

comparison with p < 0.05 is that the mean of the experimental

group is at least 0.09 below that of the control group. Since the

examined data is the natural logarithm of our effective length,

this corresponds to an effective length difference of at least

1.094, representing slightly more than a 10-fold reduction in

the expected time to crack each password. We cannot assert

from group data alone a small confidence interval on the true

difference of means. Unfortunately, the variance in password

strength between individuals is very large, so this is the limit

of our between-subject results. For reliable conclusions on a

sample size this small, we need to use paired comparisons.

To examine our results in the most “realistic” scenario, we

can opt to exclude any of our abstract measures, and only

examine the numbers from the passwords that we were able

to crack in the single day of computer time that we allocated

to the problem. In this analysis, only 16.8% of password-only

accounts had passwords weak enough to crack, while 28.4%

of the passwords from the fingerprint-using accounts were

cracked. There was little overlap between these sets; only 2

(2.1%) of users had both their passwords cracked. Because so

few passwords in our study were actually cracked by John the

Ripper, we found the abstract measures quite important.

E. Paired comparisons

By blocking and ensuring that our samples are paired,

we can reach much stronger and more specific conclusions.

Examining paired data, we find that the differences in pass-

word length are significant with p < 0.0000003 (two-tailed

test, t=5.556 with 93 degrees of freedom). More importantly,

the 95% confidence interval of the true difference in means

can be bounded to (2.23, 4.72), corresponding to a range of

170 to 52,000 in the expected factor by which passwords

would be easier to crack. The difference in sample means is

3.47, corresponding to a nearly three-thousand fold decrease

in expected time to crack. Non-parametric testing produced

results just as dramatic; the Wilcoxon signed rank test has a

p-value < 10−7.

Furthermore, more than 77% of participants used a more

difficult password for their password-only account than their

fingerprint-using account, so the effect—that users used

weaker passwords when also using a fingerprint reader—

was not only large, it was widespread. Perhaps another 15%

of users created passwords that were virtually identical in

construction or difficulty; some but not all of these were given

very similar strength scores by our metric. These passwords

are displayed in Table V. One password is omitted because of
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TABLE V
SIMILAR PASSWORD PAIRS FOR USERS THAT USED MORE DIFFICULT

PASSWORDS IN THEIR FINGERPRINT-USING ACCOUNTS

Password-only account Fingerprint-using account

SD1429 R714TP

2nd4cc !st4cc

4721jeffdum 4721jeffguy

Lav52Phy Spo820WA

A8294e9c95... ˜A8294e9c95...˜

AlexPoli AlexPoli2

M1n@B3v$ MnBv!2#4

!I91MovK P?w2U8!y

cookies87 anyone87

mahasamatan nyarlethotep

_tS.k)4xsh3_(m3. Cr_(@d)8m7Xx_o.4

aple3%#8 w?,3EqQ7

4udr3yl1lly p3anutbu77er

length; it was the same 34 character string, with a ’#’ character

appended to the password of the second account created.

This example illustrates why very similar passwords might

not be given similar ratings, because an extra ’#’ character

can be expected to increase the search space for a password

by approximately 100-fold. While comparing the similarity of

passwords is both somewhat subjective and faults from assign-

ing a binary value to a continuous relationship, our analysis

suggests that only 6 of 94 users created dissimilar password

pairs where the easier-to-crack password was assigned to the

password-only account.

F. Comparison within subgroups

Given that the overall difference between password

strengths across all participants was so large, it is worth

examining to see how that difference is distributed across

the demographic subgroups that participated in our study.

Unfortunately, our sample was not well distributed across

the questions that we asked, so many of the demographics

that we looked at do not present enough samples to be

statistically significant. Regardless, we present all responses,

albeit with caveats for each subgroup which is too small to

draw conclusions from.

1) Age: In the researchers’ experiences, other factors being

equal, people who are young enough to have grown up with

computers have a better understanding of security, even if they

do not necessarily behave in a substantially more secure way.

Figure 4 presents the observed differences. Note from Table I

that we have too few volunteers 35 or older to draw serious

conclusions. However, the differences between the 18–24 and

25–34 groups exceed the differences within those groups

when using or not using the fingerprint reader, indicating that

the magnitude of the demographic effect is smaller than the

magnitude of the effect of adding a biometric.

In Figure 4 and similar figures later in the paper, we indicate

the uncertainty of our estimation of the true mean through error

bars representing a 95% confidence interval. These error bars

Fig. 4. Password strength by participant age

Fig. 5. Password strength by participant’s educational level

would ideally be produced through bootstrapping, but since

our sample sizes are often small enough to make bootstrapping

produce optimistic (tight) confidence intervals, we use the

Gaussian-based asymptotic approximation recommended by

McGill et al. [33], but force a minimum interquartile range

(R) of at least the minimum observed difference among

any passwords of similar mean strength. Even after this, we

feel that the error bars presented are overly optimistic for

our smallest subgroups and likely under-represent the true

variance.

2) Education: Like age, education is sometimes considered

a factor in security awareness. Note that the large majority

of our participants are currently undergraduate students in the

“some college” category. There are enough students in the high

school and bachelor’s degree groups that it would be reason-

able to draw conclusions, if the differences between groups

were large, but in this case, no differences are significant at

these sample sizes. For example, p ≈ 0.2 for the hypothesis

that the difference between the password-only and fingerprint-

using accounts is larger for those with bachelor’s degrees than

those with high school degrees; p ≈ 0.4 for the hypothesis that

the password-only accounts of users with bachelor’s degrees

have stronger passwords than the password-only accounts of

users with no college education.
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3) Computer and security background: Participants were

asked questions about their familiarity with software and

computer security, as detailed in Table III. The answers to

this question were much more evenly dispersed than answers

to other demographic questions, enabling us to look seriously

at the results, as all groups in Figure 6, save the “no answer”

group, are large enough to be interesting. For Figure 6, we

abbreviated the backgrounds listed in Table III to, in order,

“non-user”, “basic user”, “standard user”, “programmer”, “se-

curity expert”, and “no answer”.

In this case, although the differences between groups are

mostly smaller than the differences between the password-

only and fingerprint-using accounts, the differences are still

large. These samples sizes are still not quite large enough to

support statistical significance; the least likely difference to

have occurred by chance is that between the password-only

account created by those who answered “I use computers for

many tasks, but do not develop software” (“standard user” in

Figure 6) and those who answered “I am familiar with the

internals of computer security systems” (“security expert” in

Figure 6), but this has a p-value of 0.07, so it misses standard

criteria for statistical significance. However, by combining the

samples of those who responded that they have a familiarity

with programming with those who responded that they were

familiar with the internals of computer security systems results

in a p-value of 0.039, and this difference is quite large—a

password rating of 4.42, representing a 26,000-fold increase

in the time expected to crack the passwords of programers and

security experts compared to those who merely use computers

extensively. Because we are testing multiple demographic

hypotheses, a p-value of 0.039 should not necessarily be

thought of as significant. However, this result is enough to

suggest further examination since the differences between

groups are large—the only reason the p-values are high is

the relatively small numbers in each sub-sample.

The computer science majors that participated in the ex-

periment also did not appear to alter our results. While we

cannot exactly classify participants based on the answers to

this question, we can see that among all groups, password

strength was noticeably decreased for the fingerprint-using

account, and by relatively similar proportions.

4) Number of passwords used: As another measure into

gaining insight into the security awareness and behaviors of

our participants, we asked each user how many passwords they

used on a regular basis. The choices we provided were overly

broad, and most of our users fell into only two categories. The

responses to that question are in Table VI.

As with several of the questions intended to distinguish

group membership, only two of the groups are large enough to

begin to draw conclusions from, but we present the results of

all groups in Figure 7. Nearly all our volunteers (93%) reported

using between 2 and 11 passwords on a regular basis, with

the majority using between 2 and 5 (72% of all respondents).

This matches expectations provided by Florencio and Herley

[1], especially when conditioning those expectations upon the

relative proportions of tech-savvy subjects in our studies.

Fig. 6. Password strength by user’s computer and security background

TABLE VI
NUMBER OF PASSWORDS USED ON A REGULAR BASIS

Number used Count Percentage

0-1 2 2.1

2-5 66 70.2

6-11 21 22.3

12-19 1 1.1

20+ 2 2.1

No answer 2 2.1

The apparent difference between the 2–5 group and the 6–11

group is small but present for both the password-only and the

fingerprint-using account. It is not, however, large enough to

reach statistical significance (p ≈ 0.086) even when comparing

all passwords of the first account to all passwords of the second

account. However, it is still reasonably likely that there is a

true group difference.

5) Password managers: As a final metric to evaluate the

security awareness and practices of our user groups, we

asked each participant the question “Do you store or generate

passwords so that you do not have to remember them all?”,

with the intention of determining whether they use some sort

of password manager in order to use a larger number of

passwords and/or use more complex passwords. The answers

Fig. 7. Password strength by number of passwords typically used
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TABLE VII
PASSWORD MANAGER USE

Used Count Percentage

No 54 57.4

Yes 31 33.0

No answer 9 9.6

Fig. 8. Password strength by password manager use

to this question appear in Table VII.

We were impressed by the large number of users that

claimed that they used some sort of password management

system. However, any difference that this might indicate in

security consciousness was not reflected in the passwords that

our study collected (p = 0.43). In fact, as seen in Figure 8, it

appears that the subgroup that uses a password management

system produces slightly weaker passwords, a surprise to the

researchers—prior to the experiment, we had a mild expecta-

tion that users who used password management systems were

more security conscious and would create better passwords.

It is possible that those users may be less experienced at

coming up with good passwords on the spot, either because

of or leading to their use of a password management system.

However, we cannot authoritatively state that any observed

difference was not a matter of chance.

G. Comparison by faith in biometrics

Our central hypothesis is that by giving users a second

authentication mechanism, we risk inflating their sense of

security in the overall system to the degree where they choose

less secure passwords to fulfill their own part in securing that

system. We can confirm this hypothesis insofar as, in the lim-

ited circumstances of our experiment, we found a remarkable

difference in the strength of the passwords created by users

expecting only those passwords to secure that account and

users expecting a fingerprint to be also required to gain access

to that account. Examining only the strength of passwords

means that we can support the effect our hypothesis predicts,

but not the actual mechanism of that effect. Supporting the

cause we propose for the effect requires that we also somehow

measure the degree to which each user actually had faith in

the security of a fingerprint as an authenticator. In order to

Fig. 9. Allocation of money to the password-only account

enable this sort of analysis, we asked several questions of each

participant prior to asking the demographic questions.

1) Account allocation: The first question we asked par-

ticipants, intended to be the most revealing, was when we

informed each participant after they had already created their

accounts that the $5 that was to be deposited in their accounts

could be divided as they saw fit. They were given a slider con-

trol and asked to allocate $n to their password-only account

and $(5− n) to their fingerprint-using account.

Despite the fact that participants could choose any dollar

and cents amount for this question, most chose round numbers

such as $2.50 or $2.00, as can be seen in Figure 9. The mean

allocation was $1.76 to the password-only account ($3.24

to the fingerprint-using account), seeming to indicate that

even though passwords were weaker for the fingerprint-using

account, participants had more faith in the combination of

a fingerprint reader and a (usually weaker) password. This

undershoots the prediction of risk homeostasis theory, since

users still believe that they are more secure even after reducing

the complexity of their passwords4. However, it matches most

expectations of risk compensation theory that expect additional

security measures to be sub-additive [10].

It is of some interest that participants overall had greater

faith in the fingerprint-secured account, but it is of more

interest that the more faith an individual participant had in the

fingerprint-secured account, the weaker that participant’s pass-

word for the fingerprint-using account was compared to their

other password. Figure 10 shows the graphical breakdown. In

this and future figures, a positive difference indicates that the

password for the password-only account was stronger than the

password for the fingerprint-using account. The correlation is

not strikingly obvious (the best fit line is dashed in green), but

Pearson’s product-moment correlation for those two variables

is −0.468, and the hypothesis that there is no correlation

between them has a p-value of p < 0.000002, indicating that

there is actually quite a strong degree of correlation between

4Users didn’t make their passwords weak enough (according to their
own subjective appraisals) to compensate for the security they expected the
fingerprint reader to add; they judged the system as more secure overall, but
homeostasis theory implies that it should be the same for both accounts.

42



Fig. 10. Change in password strength by account allocation

the feeling of security users had and how much weaker their

passwords were.

It may concern some readers that the data plotted in Figure

10 have significant outliers and that the Pearson product-

moment correlation is too sensitive to outliers for this to be a

trusted result. However, non-parametric tests reveal essentially

the same result. For the hypothesis that they have no correla-

tion: Spearman’s rank correlation ρ = −0.464 with a p-value

less than 0.000003 and Kendall’s rank correlation τ = −0.347,
also with a p-value less than 0.000003.

2) User’s security evaluation: After allocating money be-

tween the two accounts they had created, participants were

asked to directly evaluate the security of the two accounts,

as well as the components of each account. This evaluation

was in the form of radio buttons that allowed participants to

choose a response to the prompt “For each security measure,

estimate how likely it is that the hackers will defeat it.” for

each of the following security measures:

1) the password used for the password-only account

2) the password used for the fingerprint-using account

3) the fingerprint used for the fingerprint-using account

4) all security on the fingerprint-using account

The results of these responses are in Table VIII. The partic-

ipants responded with “Very unlikely”, “Somewhat unlikely”,

“Neither likely nor unlikely”, “Somewhat likely”, or “Very

likely”. For the sake of clarity, in Table VIII, those answers

have been replaced with “Very secure”, “Somewhat secure”,

“Neither secure nor insecure”, “Somewhat insecure”, or “Very

insecure”, respectively.

The ability of participants to determine the quality of

their passwords, directly, can perhaps be considered quite

poor. Figure 11 demonstrates this through boxplots. If users

correctly estimated the strength of their passwords (at least

as measured by our ability to crack them), then Figure 11

would consist of medians, boxes and whiskers 5 increasing

5Whiskers appear at the end of the dotted lines, and indicate 1.5 times the
median to quartile difference. The top and bottom of each box represent the
25th and 75th quartiles, while the middle line is the median. The notches
indicate a 95% confidence interval around the true median. Outliers appear
as crosses.

Fig. 11. User’s evaluation of password strength by measured strength

in value for increasing user security evaluations. While this

appears, the correlation is very weak, and in fact testing for a

correlation provides only p-values of 0.169 and 0.083 for the

each group of passwords (password-only and fingerprint-using,

respectively). Aggregating over both groups results in a sample

Pearson’s product-moment correlation of 0.172, and a p-value

of 0.018 for the hypothesis that the two are not correlated,

indicating that users are somewhat effective at discerning the

strength of their passwords, but inconsistently.

Users proved much more able at the task of determining

which of their passwords was the stronger. Figure 12 is similar

to 11, but compares the difference in strength participants

claimed against the differences in measured password strength.

The clustering is not much better; the Pearson’s product-

moment correlation of the two data is 0.186, with insufficient

statistical significance (p-value of 0.07). However, the actual

measured strength difference is much less important than

whether such a difference exists; comparing only the sign

of the difference to the evaluation improves the correlation

to 0.261 and the p-value to 0.01. Practically speaking, only

9.5% of users incorrectly gauged which of their passwords

would be easier to break, although 55.8% of users marked

their passwords as equally likely to be cracked by hackers.

Thus their ability to gauge a numeric difference between their

passwords was minimal, but their ability to correctly assess

the sign of that difference was very good.

As before when measuring account allocation, we can

attempt to use these answers to determine whether greater faith

in the fingerprint-protected account was reflected by the choice

of a weaker password for that account. Like Figure 10, Figure

13 compares a change in password strength to the difference

of security evaluations participants gave for their password

versus the entire security of the fingerprint-using account. The

correlation, as expected, is much weaker, and is in fact too

weak to be considered significant. Similar graphs and analyses

appear when comparing measured strength decreases against

the user’s evaluations of the security of the fingerprint reader,

as well as the increase in their rating of the security from

fingerprint password to their rating of all the security of the
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TABLE VIII
USER EVALUATION OF SECURITY OF ACCOUNTS AND ACCOUNT PARTS (PERCENTAGES)

Security rating
Password used in Password used in Fingerprint used in Aggregate security of

password-only account fingerprint account fingerprint account fingerprint account

Very secure 23.4 13.8 21.3 31.9

Somewhat secure 35.1 38.3 37.2 34.0

Neither secure nor insecure 13.8 16.0 17.0 22.3

Somewhat insecure 21.3 23.4 16.0 7.4

Very insecure 6.4 8.5 8.5 4.3

Fig. 12. Difference in user evaluation of password strength by measured
strength differences

Fig. 13. Change in password strength by users’ security evaluation

fingerprint account.

It is possible that a correlation fails to appear because

of the discrete nature of the questions asked, but given that

participants mostly chose a few discrete values when allocating

money to their accounts, that seems unlikely to explain the

difference. It seems more likely that the nature of the questions

were less concrete; asking users to directly allocate their

money resulted in a much more purposeful evaluation.

V. FUTURE WORK

The very nature of user studies opens them to a large

degree of variability; since our study and results have not been

heretofore tested, we can only make claims within the limited

focus of our study. Similar tests in other circumstances are

important to broaden the use of our conclusions. In particular,

studies requiring users to log into accounts many times over

an extended period of time and studies that do not stress the

immediate security threats are probably necessary in order to

extend our conclusions to general user behavior. In addition,

long term studies that allow users to reuse passwords, modify

passwords and opt out of either the password or fingerprint

should be considered. Finally, a study similar to this one

should be conducted with users who are less informed with

respect to security.

In the same vein, our study only examined one kind of

biometric authenticator in one operational mode. Other studies

are warranted to examine other forms of security, including

biometric and token-based systems. It is probably even worth

studying the impact of “back-end” security that users do not

have to directly interact with, such as the logos on websites

that purport to assure users that the web form they are

interacting with is secured in some way.

Our study only examined the strength of passwords, which

measures only one small aspect of security that users are

responsible for. There are many other areas in which users

might act less or more securely; for instance, are users

less reluctant to disclose their passwords if they expect a

fingerprint to secure their account? Deeper investigations into

these questions are likely to be more difficult to execute,

but comprehensive studies that consider all of the interacting

issues that arise from multi-factor authentication are necessary

to inform administrators for effective security policy decisions.

In our study, although there was a distinct difference in the

strength of passwords between the password-only account and

the fingerprint-using account, the vast majority of participants

chose both their passwords to be strong enough to foil even a

very dedicated adversary. We do not know whether this trend

would have existed if there were limits on the size of the

password, but it is likely that the attention users pay to security

in other areas will end up more greatly impacting the security

of a system than their password choice.

Additionally, our study suggests two potential ways to

increase the strength of user passwords—through mention

of a specific, imminent threat and through competition with

other users. The former is already done in some instances

and to some degree by system administrators that proactively

crack passwords [34], although proactively cracking passwords
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without the knowledge of the users should fail to achieve this

psychological advantage. More broadly, many companies have

training programs that warn users about the threats associated

with weak security. Further study would be needed before we

could identify the actual effects of either of these factors in

increasing the strength of user passwords.

VI. CONCLUSION

Our experiment showed clearly that at least under controlled

conditions users can be expected to behave less securely when

interacting with systems that seem to them to be better secured.

Although this is the predicted result of risk compensation

theory, the implications of this finding are still potentially

significant: if the results transfer to users and systems outside

of a laboratory setting, system administrators should be wary

of the kind of changes they make to secure a system, lest

they inadvertently make the system less secure by unduly

influencing user behavior.

Because of the much-better-than-expected strength of pass-

words in our study, we do not expect changes in the actual

strength of real user passwords to be well predicted by our

findings, but it is possible that similar relative differences—

around a three thousand fold decrease in time-to-crack—will

be exhibited in the real-world. Given differences of this mag-

nitude, using a password with a second required authentication

mechanism is probably wise only if that mechanism can be

trusted to secure the system at least well enough to make up for

that difference. This advice, of course, becomes less and less

relevant the less the mechanism under consideration resembles

the environment of our experiment. Our results demonstrate

a strong correlation between a perception of security and de-

creased password strength. This implies that our results can be

explained by risk compensation theory, in which case our most

important result can be phrased as “do not introduce security

mechanisms that appear to provide more security than they

actually provide”. Notably, if our fingerprint readers provided

as much security as our participants expected they would,

the resultant decrease in password strength with the addition

of the fingerprint readers would not have significant impact

on overall security. However, if our readers were connected

to exploitable software or poorly designed, our participants

could have been choosing weaker passwords without any

compensation made by the use of the fingerprint reader.

Our personal feelings are that “sexy” security mechanisms

that are heavily used in fiction and popular culture—including

forms of biometric authentication, like fingerprint readers—

are most liable to violate this policy. Security mechanisms

like smart cards that provide good security but do not have

a significant presence in spy movies may be less likely to be

implicitly trusted. Of course, if a mechanism is a good enough

security measure to trust it regardless of user behavior, then

employing it will always be a good choice. We are, however,

reluctant to classify any particular technology into a category

where we trust that poor user practices will not affect it.

Lastly, although studying user behavior is seldom a primary

focus in the field of computer security, it is significant. The

better we do to secure systems, the more likely that the weakest

component of the system will be the user. Thus anticipating

user behavior becomes an important aspect of our job in

designing secure systems, mandating a degree of confidence

in what sorts of behaviors we can expect from users. While

our contribution to this broad subject is focused and limited to

only a few facets, we hope to directly assist the development

of more secure systems and encourage further study of user

behavior in a variety of security contexts.
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