NodeMedic: End-to-End Analysis
of Node.js Vulnerabilities
with Provenance Graphs

Darion Cassel, Wai Tuck Wong, Limin Jia

s Carnegie Electrical & Computer

£ Carnegie Mellon University 7)(?
’\ %I?}L%I;Slty {K) E N G I N E E Rl N G Cy La Security and Privacy Institute \ SMU

NS

Introduction: Node.js JavaScript Runtime

Node.js is widely used for server-side, desktop, and loT development

Node.jsl

ASP.NET Core

o ASPNET
S
3

g Django

g Flask

Laravel

Ruby on Rails

0 10 20 30 40 50
% of Professional Developer Respondents gg\%iloper
npm: Ecosystem of 1 million+ packages developers can use L= survey

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Node.js is Popular for Attackers Too

Node.js package vulnerabilities in the news

https://ar: echnology/2021/09/npm-package-with-3-million-weekly-downloads-had-a vulnerability/

https://www.theregister.com/2019/06/07/komodo_! wallets/

NPM package w1th 3 mllhon weekly
downloads had a severe vulnerability

Someone slipped a vuln |nto crypto-
wallets via an NPM package. Then

Have you updated your Electron app? We

someone else siphoned off $13m in coins

hope so. There was a bad code-injection
bug in it

GitHub security team fihds remote code execution
bug in popular Node.j JS Changelog I|brary

https://www.theregister.com/2018/05/14/electron_xss_vulnerability_cve_2018_1000136/

https://portswigger.net/daily-swig/github-security-team-finds-rem code- n-bug-in-popular-node-js-changelog-libra

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Background: Node.js Package Attacker Model

<exploit>

Parent application (PA) includes a vulnerable
dependency (Dep 6) I

From npm

—

Arbitrary Code Execution (ACE; CWE-94)
Arbitrary Command Injection (ACl; CWE-88)

PA has an unsanitized dataflow
/ (heavy red arrows) to Dep 6

X Dep 6 accesses privileged Node.js APl (exec)
exec(<exploit>)

Attack: 1) Submits exploit to PA 2) PA passes exploit to Dep 6 3) Dep 6 passes exploit to exec

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Background: Node.js Package Attacker Model

Prior work detects these flows
with dynamic taint analysis

[1] Francois Gauthier, Behnaz Hassanshahi, and Alexander Jordan. AFFOGATO: Runtime
detection of injection attacks for Node.js. In ISSTA/ECOOP Workshops, 2018.

exec ((exploit)) [2] R. Karim, F. Tip, A. Sochurkova, and K. Sen. Platform-Independent Dynamic Taint
Analysis for JavaScript. IEEE Transactions on Software Engineering (TSE), 2018.

Challenge: Average package has 79 dependencies to be checked [Zimmerman 2019]

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Challenges for Node.js Package Dynamic Taint Analysis

1. Driving package APIs

2. Precise analysis of built-in datatypes

3. Scaling to large dependency trees

End-to-End Analysis
Infrastructure

4. Triage of tainted flows

5. Confirmation of tainted flows

Provenance Graphs

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

. (10) Tainted o _] Tainted
Provenance Tracking 1 nput
o Prior: Policy-based taint propagation ettt
o+ Graph of operations performed
- ;/7 Constants
Provenance graph s 2l -
output of NodeMedic otmg /
Foundation for further analysis: Package
. . et Operations
o Exploit synthesis (covered later)
> Triage (see paper) 3
R —4 Sink

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

NodeMedic End-to-End Analysis Infrastructure (1/2)

-

Node.js
Program

J

-~

-

Provenance Tracking
Instrumentation

Driver
Generation

Package

" Dependency Tree

I
v

-

"

Provenance
Precision
Tuning

\

J

/
Tuned

Instrumented

/

Node s

Program

)

) 4
Instrumented
—— Nodejs [—
Program
J J
4
Package
—
Driver

Challenges: 1) Driving package APIs 2) Precise analysis 3) Scalable analysis

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

4

~

n o
u@d e

o

J

A 4

Provenance
Graph

0

Vulnerable
Flows

NodeMedic End-to-End Analysis Infrastructure (2/2)

Node js
Program

Package

Provenance Tracking

Instrumentation

Driver
Generation

Exploit Success
or Failure

Instrumented
Node js
Program

Package
Driver

4 N

A

n o
u@d e

- /

Provenance
Precision
Tuning

” Dependency Tree

f Candidate

4&

Challenges: 4, 5) Reduce analyst triage burden

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Exploit

Exploitability
Rating

Tuned
Instrumented
Node js
Program

Exploit
Synthesis

(22

~

Triage
Model

Provenance
Graph

0

Vulnerable
Flows

Solution: Scalable Analysis of Large Dependency Trees

Motivation: Packages avg 79 deps

Insight: Not every dependency needs
precise analysis; deeper deps. don't add
flows but increase overhead

Algorithm: Mark, based on a package’s
depth in tree, whether to analyze
precisely or imprecisely

' Tuning: Analyst-controllable
| parameters w.r.t. tree size & depth

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Solution: Reducing Analyst Triage Burden (1/2)

Motivation: Analyst must manually confirm reported tainted flows
> Confirm: Construct a proof-of-concept (PoC) exploit

o Reduces analysis scalability

Insight: Provenance graph contains operations performed on tainted value

PaCkage API (3) Untainted (5) call:grep (8) Untainted
1 function grep(inpt) { [String: ‘grep '] ‘tainted' [String: 'tainted']

2 exec(‘grep ° + inpt);
3}
(2) string.concat (7) call: set taint
. ‘grep tainted' 'tainted’
Driver Code
(6) Tainted
[String: 'tainted’]

__set _taint_ (‘tainted’);

1
2 grep(‘tainted’);
‘grep tainted'

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

Solution: Reducing Analyst Triage Burden (2/2)

(1) Provenance graph = SMT formula encoding operations and PoC

3) .Untainted 5) cgall:grep (8) Untainted
[String: 'grep '] 'tainted' [String: 'tainted']

Y
(2) string.concat (7) call: _set taint |
'grep tainted' 'tainted'
4
(1) call:_exec (6) Tainted
'grep tainted' [String: 'tainted']

I——

(2) Solve with Z3 and derive model if SAT

(3) Rerun package with candidate PoC

(4) Check for PoC success

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

1 (declare-const i@ String)
2 (assert (str.contains

3 (str.++

4 “grep ” i@

5)

6 “ $(touch success);#”
7))

1 (i@ “ $(touch success);#”)

grep(“ $(touch success);#”);

success

Results: Large-Scale Evaluation on Real Node.js Packages

Result: Scalable analysis of 10,000 Package Results Count
packages from npm Inherent package issues 394
Package analysis timeout 258
Prior work: ~20 packages [1, 2] No tainted flows 9175
Tainted flows 173
Result: Able to automatically confirm 108 potential flows
Type Count |Confirmed |Percent
Arbitrary command injection (ACI) |133 102 76%
Arbitrary code execution (ACE) 22 6 27%
Total 155 108 70%

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

More in the Paper and our Repository

— |n the paper: - github.com/NodeMedicAnalysis
o Precise provenance analysis o End-to-end infrastructure
o Custom propagation policies o 589 taint precision tests

o Triage rating methodology o Case studies

NodeMedic: End-to-End Analysis of Node.js Vulnerabilities with Provenance Graphs

http://github.com/NodeMedicAnalysis

