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Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)

sy = rp + my mod q sg = rg + mg mod q
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 * Dragonfly == SAE in WPA3
 * Balanced, looks somewhat like an ECDH, with the password beign used as the base point
 * Ephemeral random scalars
 * Secret in red 


Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)
sy = rp + my mod q idg sg = rg + mg mod q
P = pwd_conv(pwd, ids, idg) P = pwd_conv(pwd, ida, idg)
Qa = -maP Qg = -mgP

Commit(sa, Qa)

Commit(SB, QB)
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 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange 
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information 
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- Difficult to implement securely

- Concerned were raised... and confirmed
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 * The works I am about to present come a bit after.
 * First, ACSAC, build upon the cache-attack presented at S&P, with improved leakage and efficiency
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 * Upgrade with a new mode, that relies on another method to convert the password: deterministic with a straightforward workflow.
 * Finally the large literature around hashing to ellptic curve starts to pay off 
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 * Varies with from one implementation to the other, 
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?
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 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.
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 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
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 * With his approach in mind, let's look at the leaky password conversion method. 


Looking Under the Hood
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def set_compressed_point(x, fmt, ec)
Branching on the compression format
Affects SAE (legacy version)
1-bit leakage
Narrow scope outside of Dragonfly
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Looking Under the Hood

def set_compressed_point(x, fmt, ec) def bin2bn(buf, buf_length)
+ Branching on the compression format + Skipping leading 0 bytes
- Affects SAE (legacy version) - Affects both SAE and SAE-PT
+ 1-bit leakage - 8-bit leakage with proba 1/256
« Narrow scope outside of Dragonfly -+ Wide scope (targets utility
function)

Affected projects:

+ hostap/wpa_supplicant with OpenSSL/WolfSSL
+ iwd with ell
+ FreeRadius with OpenSSL
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"Obviously” Vulnerable, yet Difficult to Exploit

Very few conditional instructions (one cache line or less)
Many false positives with "vanilla” Flush+Reload

Using existing attack to create a new distinguisher

Abuse prefetching behaviors to create a new distinguisher!
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Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:

y=ecp-y A
P = init_point(x, y, ec) }> B
[...]
return P
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 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format. 
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.
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 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.
 


Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec): Very accurate distinguisher, with a better

y = compute_y(x, ec)

spatial resolution!

if y = fmt mod 2: 0.3 |
y=ecp-y g A 021t
P = init_point(x, y, ec) & > B 0.1 1
[...]
0
return P

'

S&P20 ACSAC20 This

9/12



Sustainable patch for hostap

Cryptographic libraries refused to patch
Many other potential vulnerabilities (= 400)

Shall we replace them?
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 * We contacted affected project, suggesting patches. The lib refused, so we patched the wifi daemons.
 * We were a bit concerned by the library reaction, and observed more than 400 ct violation in the execution of the crypot code
 * Looked for an alternative
 


Sustainable patch for hostap

Cryptographic libraries refused to patch
Many other potential vulnerabilities (= 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library’

Memory-safety
Functional correctness

Secret independence
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 * HaCl*, written in F*, generated C code that has been formally verified to comply with the following property.
 * Nice performance, also not as good as optimized assembly.
 * Engeneering effort to impelment some optimizations, expose additional API, and add a couple methods needed to implement Dragonfly
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1 Thank you Alexandre Sanchez for helping with the patch integration
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 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer. 
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 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer. 


crypto/

crypto.h
crypto_hacl.c

-WPA
mm crypto_mbedtls.c
crypto_openssl.c

EAP methods crypto_wolfssl.c

wpa_supplicant

EAP
state machine
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 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer. 


A New Attack

Dictionary attack (SAE/SAE-PT)
Improved signal-to-noise ratio!
First side-channel in SAE-PT
(supposed to be ct by design)

New generic gadget
Potential impact on many
low-level arithmetic functions
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A New Attack A Better Defense

- Dictionary attack (SAE/SAE-PT)
+ Improved signal-to-noise ratio!
* First side-channel in SAE-PT - Formally verified crypto
(supposed to be ct by design)

, implementation (HaCl*)
- New generic gadget

. *!
- Potential impact on many Benefit from HaCl*'s team support
low-level arithmetic functions

- 3 Security patches (hostap, iwd,
FreeRadius)

Material available at

*https://gitlab.inria.fr/ddealmei/artifact_dragondoom
*https://gitlab.inria.fr/ddealmei/artifact_dragonstar
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Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:

y = ec.p -y

P = init_point(x, y, ec) }> B
[...]

return P


 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format. 
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.
 


Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:
y = ec.p -y &

P = init_point(x, y, ec) & }> B
[...]

return P


 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.
 


Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) < S cond (A)

probe (B)
cond (A)
if y = fmt mod 2: probe (B)
A

y = ec.p -y &

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 0

return P


 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits. 
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[...] .
nb hits: 0

return P
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 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits. 


Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)
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y = ec.p -y &

P = init_point(x, y, ec) &
[...]

return P
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Attacker


 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits. 
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Very accurate distinguisher, with a better
spatial resolution!

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:
y = ec.p -y

P = init_point(x, y, ec)
[...]

return P
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 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
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 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits. 
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