From Dragondoom to Dragonstar: Side-channel Attacks and Formally Verified

Implementation of WPA3 Dragonfly Handshake

Daniel De Almeida Braga', Natalia Kulatova?3, Mohamed Sabt’, Pierre-Alain Fouque', Karthikeyan Bhargavan?
EuroS&P - July 51", 2023

University of Rennes, CNRS, IRISA'
Mozilla?
INRIA, Paris?

©RisA B @ lreeia—

Toward Secure Wi-Fi Protocols...

Client\A@ss Point

= -)

1999 2003 2004 2018

2/12

Toward Secure Wi-Fi Protocols...

Client\A@ss Point

) DS

1999 2003 2004 2018

o)
67/' Nom du réseau wiFi (ssio): Bbox — NN
/7@ . i~ F (Clé de sécurité WPA, 3 saisir sans espace):
(9[/C[5 €376 10e4 3¢75 a37d 8a8c 3806 98b7 bc
(:9 o)
(& ,f /76

7, 2/12

Toward Secure Wi-Fi Protocols...

Client\A@ss Point

= -)

1999 2003 2004 2018

0. ﬁ
Ol

I
Cop "ny

v & 2/12

Toward Secure Wi-Fi Protocols...

/’\\
Client_Aess Point

D - D

1999 2003 2004 2018 today

+ More secure
+ Based on a PAKE (Dragonfly')

2/12

1'D. Harkins. Dragonfly Key Exchange. RFC 7664. 2015

Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)

sy = rp + my mod q sg = rg + mg mod q

3/12

 * Dragonfly == SAE in WPA3
 * Balanced, looks somewhat like an ECDH, with the password beign used as the base point
 * Ephemeral random scalars
 * Secret in red

Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)
sy = rp + my mod q idg sg = rg + mg mod q
P = pwd_conv(pwd, ids, idg) P = pwd_conv(pwd, ida, idg)
Qa = -maP Qg = -mgP

Commit(sa, Qa)

Commit(SB, QB)

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)
sy = rp + my mod q idg sg = rg + mg mod q
P = pwd_conv(pwd, ids, idg) P = pwd_conv(pwd, ida, idg)
Qa = -maP Qg = -mgP

Commit(sa, Qa)
Commit(SB, QB)
kck || mk = compute_keys(ra, P, sg, Qg) kck || mk = compute_keys(rg, P, sa, Qa)

Confirmy

Confirmg

Verify cg Verify cp

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

Dragonfly / SAE - A Balanced PAKE

Alice Bob

ra, ma = rand(2, ..., gq-1) ida rg,mg = rand(2,...,q-1)
sy = rp + my mod q idg sg = rg + mg mod q
P = pwd_conv(pwd, ida, idg) P = pwd_conv(pwd, ida, idg)
Qa = -maP Qg = -mgP

Commit(sa, Qa)

Commit(SB, QB)

Verify cg Verify cp

3/12

 * Key part here, the password/identities are converted into a point, the public keyshare is computed from there
 * Following exchange is pretty standard for a key exchange
 * We want to focus on the password conversion part, as we will be operating on low entropy values, and may leak information

... But Still not Bulletproof

2018 2019 2020 today
{
Dragonblood’
attacks

« Weird choice of password conversion method
- Probabilistic
- Difficult to implement securely

- Concerned were raised... and confirmed

1 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P'20 4/12

... But Still not Bulletproof

Dragonblood is Still Leaking?

B
2018 2019 2020 today
1
Dragonblood’
attacks

« Weird choice of password conversion method
- Probabilistic
- Difficult to implement securely

- Concerned were raised... and confirmed

1 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P'20 4/12
2 p. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC 20

 * The works I am about to present come a bit after.
 * First, ACSAC, build upon the cache-attack presented at S&P, with improved leakage and efficiency

... But Still not Bulletproof

Dragonblood is Still Leaking?

S
2018 2019 2020 today
1 {
Dragonblood’ SAE-PT
attacks

- Better password conversion (SSWU)
- Deterministic
- Straightforward constant-time implementation

- /\ Not backward compatible

1 M. Vanhoef and E. Ronen. Dragonblood: Analyzing the Dragonfly Handshake of WPA3 and EAP-pwd. In IEEE S&P'20 4/12
2 p. De Almeida Braga et al Dragonblood is Still Leaking: Practical Cache-based Side-Channel in the Wild. In ACSAC 20

 * Upgrade with a new mode, that relies on another method to convert the password: deterministic with a straightforward workflow.
 * Finally the large literature around hashing to ellptic curve starts to pay off

Attack Workflow

Cr~)

| Access Point

5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Cr~)

| Access Point

Victim

Spy process
5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Victim

Spy process
5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

Spying/Data Acquisition

Implementation specific

Usually noisy measurement

Comparison metric: Signal to Noise ratio

Spy process

5/12

 * Varies with from one implementation to the other,
 * Choose a technique, and the instructions/data to spy on
 * May be noisy -> amount of info is not a relevant metric
 * Instead we use S2N ratio: on average, how many bits are leaked with 1 measurement?

Attack Workflow

A\
@

Leaked information

Trace parsing

5/12

Attack Workflow

Offline Dictionary Attack

%
373

T 4

I
RSO

Remaining passwords

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

H(secret) = 10...

%
373

T 4

I
RSO

Remaining passwords

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

X H(x)

secret 10.

pwd, Pess

pwd, %

pwds @/e\:;zz:;q
Remaining passwords
pwdp

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

X H(x)
secret 10.
de1 01.. P
Svqu
pwd, 10.. &M\%&T'”
pwds 11. Beskag,
Remaining passwords
pwd, 10..

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

X H(x)
secret 10.
%
pwd, 10. e
Sesray,
Remaining passwords
pwd, 10..

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

X H(x || pub:) H(x || pub,)
secret 10.. 00..
Pass‘\/or
pwd, 10.. 00.. Liverent
%2&:
Remaining passwords
pwd, 10.. 11..

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline Dictionary Attack

X H(x || pub:) H(x || pub,)
secret 10.. 00..
Pass‘\/or
pwd, 10.. 00.. Liverent
%2&:

Remaining passwords

5/12

 * Quite generic, also it depends on the nature of the information we got.
 * Give an idea: assume you learned that you got 2 bits of info on a pwd-related value. *eg: you learned that H(pwd) starts with 1 and 0 bits
 * Run the same process with all password candidates, and see if their hash starts the same. Discard all those who do not match.
 * Even better if a pub value is involved, since you can make it change, and repeat your measurements.

Attack Workflow

Offline dictionary

P attack !
Leaked information
WPA3 (SAE)
%{
T
Sesnas,
Trace parsing Remaining passwords

Spy process
\/ 5/12

 * With his approach in mind, let's look at the leaky password conversion method.

Looking Under the Hood

We mostly analyzed Wi-Fi daemons...

—~

—

N —

.. what about their dependencies, like crypto libraries?

6/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec)
Branching on the compression format
Affects SAE (legacy version)
1-bit leakage
Narrow scope outside of Dragonfly

7/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec) def bin2bn(buf, buf_length)
Branching on the compression format Skipping leading 0 bytes
Affects SAE (legacy version) Affects both SAE and SAE-PT
1-bit leakage 8-bit leakage with proba 1/256
Narrow scope outside of Dragonfly Wide scope (targets utility
function)

7/12

Looking Under the Hood

def set_compressed_point(x, fmt, ec) def bin2bn(buf, buf_length)
+ Branching on the compression format + Skipping leading 0 bytes
- Affects SAE (legacy version) - Affects both SAE and SAE-PT
+ 1-bit leakage - 8-bit leakage with proba 1/256
« Narrow scope outside of Dragonfly -+ Wide scope (targets utility
function)

Affected projects:

+ hostap/wpa_supplicant with OpenSSL/WolfSSL
+ iwd with ell
+ FreeRadius with OpenSSL

7/12

"Obviously” Vulnerable, yet Difficult to Exploit

Very few conditional instructions (one cache line or less)
Many false positives with "vanilla” Flush+Reload

Using existing attack to create a new distinguisher

Abuse prefetching behaviors to create a new distinguisher!

8/12

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:

y=ecp-y A
P = init_point(x, y, ec) }> B
[...]
return P

9/12

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format.
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)
if y = fmt mod 2:
y = ec.p -V & A

P = init_point(x, y, ec) & }> B
[...]

return P

9/12

 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec): Very accurate distinguisher, with a better

y = compute_y(x, ec)

spatial resolution!

if y = fmt mod 2: 0.3 |
y=ecp-y g A 021t
P = init_point(x, y, ec) & > B 0.1 1
[...]
0
return P

'

S&P20 ACSAC20 This

9/12

Sustainable patch for hostap

Cryptographic libraries refused to patch
Many other potential vulnerabilities (= 400)

Shall we replace them?

10/12

1J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS'17

 * We contacted affected project, suggesting patches. The lib refused, so we patched the wifi daemons.
 * We were a bit concerned by the library reaction, and observed more than 400 ct violation in the execution of the crypot code
 * Looked for an alternative

Sustainable patch for hostap

Cryptographic libraries refused to patch
Many other potential vulnerabilities (= 400)

Shall we replace them?

HaCl*: A Formally Verified Cryptographic Library’

Memory-safety
Functional correctness

Secret independence

10/12

1J-K. Zinzindohoué et al. HACL*: A Verified Modern Cryptographic Library. In CCS'17

 * HaCl*, written in F*, generated C code that has been formally verified to comply with the following property.
 * Nice performance, also not as good as optimized assembly.
 * Engeneering effort to impelment some optimizations, expose additional API, and add a couple methods needed to implement Dragonfly

Fixing hostap'

[wpa_cli] lGUI frontend]

wpa_supplicant
l driver i/f]

configuration

2_packets Event
loop
driver events

driver i/f

WPA
state machine

EAPOL
state machine

EAP
state machine

| [T

EAP methods

kernel network device driver

1 Thank you Alexandre Sanchez for helping with the patch integration

1/12

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

Fixing hostap'

wpa_supplicant

WPA
state machine

EAPOL
state machine
EAP
state machine

EAP methods

1 Thank you Alexandre Sanchez for helping with the patch integration

1/12

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

crypto/

crypto.h
crypto_mbedtls.c

WPA
crypto_openssl.c
crypto_wolfssl.c
state machine

EAP methods LI

wpa_supplicant

EAP
state machine

1/12

1 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

crypto/

crypto.h
crypto_hacl.c

-WPA
mm crypto_mbedtls.c
crypto_openssl.c

EAP methods crypto_wolfssl.c

wpa_supplicant

EAP
state machine

1/12
1 Thank you Alexandre Sanchez for helping with the patch integration

 * Goal is to include it in hostap, as an alternative cryptographic provider.
 * Project organized in module, crypto is one of them
 * Common API in .h, mapping API<->lib in .c
 * Implement this mapping + work to integrate it in hostap, with the help of an engenneer.

A New Attack

Dictionary attack (SAE/SAE-PT)
Improved signal-to-noise ratio!
First side-channel in SAE-PT
(supposed to be ct by design)

New generic gadget
Potential impact on many
low-level arithmetic functions

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

A New Attack A Better Defense

Dictionary attack (SAE/SAE-PT)

Improved signal-to-noise ratio!
First side-channel in SAE-PT Formally verified crvpto
(supposed to be ct by design) y yp

, implementation (HaCl*)
New generic gadget

*!
Potential impact on many Benefit from HaCl*'s team support
low-level arithmetic functions

3 Security patches (hostap, iwd,
FreeRadius)

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

A New Attack A Better Defense

- Dictionary attack (SAE/SAE-PT)
+ Improved signal-to-noise ratio!
* First side-channel in SAE-PT - Formally verified crypto
(supposed to be ct by design)

, implementation (HaCl*)
- New generic gadget

. *!
- Potential impact on many Benefit from HaCl*'s team support
low-level arithmetic functions

- 3 Security patches (hostap, iwd,
FreeRadius)

Material available at

*https://gitlab.inria.fr/ddealmei/artifact_dragondoom
*https://gitlab.inria.fr/ddealmei/artifact_dragonstar

12/12

https://gitlab.inria.fr/ddealmei/artifact_dragondoom
https://gitlab.inria.fr/ddealmei/artifact_dragonstar

Appendix

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:

y = ec.p -y

P = init_point(x, y, ec) }> B
[...]

return P

 * set compressed point coordinate: compute one of the two potential y, then choose which one to use based on the compression format.
 * compression format is secret, so is y, learning if their parity is the same leaks information
 * Conditional instruction are in cache line A, cache line B contains instructions executed right after.
 * Classical F+R : spy on A, but in practice, instructions are fast, so we get false negative, cache line might be prefetched so we get false positive -> not very accurate.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:
y = ec.p -y &

P = init_point(x, y, ec) & }> B
[...]

return P

 * Monitor access to the following CL (B), and continuously flush A from the cache. Here, B will be loaded in the cache at some point anyway but
 * The idea is to make the victim prefetch B more time if they execute A, creating a distinguisher based on *how many times* we see a cache rather than if we see it at all.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) < S cond (A)

probe (B)
cond (A)
if y = fmt mod 2: probe (B)
A

y = ec.p -y &

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 0

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

ﬁush(pDA)
def set_compressed_point(x, fmt, ec): ~ ——— T 00000,
y = compute_y(x, ec) < ‘”ﬁzv"' cond (A)
- probe (B)
cond (A)
if y = fmt mod 2:
y = ec.p -y & A
CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[...] .
nb hits: 0

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) < S cond (A)

probe (B)
cond (A)
if y = fmt mod 2: probe (B)
A

y = ec.p -y &

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 0

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) < felég(;;'(' ~~~~~ ond

cond (A) i
if y = fmt mod 2: probe (8)
A

y = ec.p -y &

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 0

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

— if y = fmt mod 2:
y = ec.p -y &

P = init_point(x, y, ec) &
[...]

return P

cond (A)

probe (B)

> B Victim

CPU cache

nb hits: 0

cond (A)

probe (B)

Attacker

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) <

cond (A)
— 1if y = fmt mod 2: probe (B)
A

y = ec.p -y &

B cond (A)

probe (B)

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 1

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

ﬁush(pDA)
def set_compressed_point(x, fmt, ec): ~ ——— T 00000,
y = compute_y(x, ec) % ‘”ﬁ:T“. condl(a)
- probe (B)
cond (A)
— if y = fmt mod 2:
y =ec.p -y &ff A
CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[...] .
nb hits: 1

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

2 Tush (ppy)
def set_compressed_point(x, fmt, ec): ~ ——— T B,
y = compute_y(x, ec) cond (A)
probe (B)

cond (A)

if y = fmt mod 2: probe (8)
— y = ec.p -y 5i) A
CPU cache

P = init_point(x, y, ec) & B Victim Attacker
[...]

nb hits: 1

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) <

cond (A)
if y = fmt mod 2: probe (B)
A

— y = ec.p -y &

B cond (A)

probe (B)

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits; 2

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

ﬁush(pDA)
def set_compressed_point(x, fmt, ec): ~ ——— T 00000,
y = compute_y(x, ec) % ‘”ﬁ:T“. condl(a)
- probe (B)
cond (A)
if y = fmt mod 2:
= y = ec.p -y 5i) 4
CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[...] .
nb hits: 2

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

2 Tush (ppy)
def set_compressed_point(x, fmt, ec): ~ ——— T B,
y = compute_y(x, ec) cond (A)
probe (B)

cond (A)

if y = fmt mod 2: probe (8)
— y = ec.p -y 5i) A
CPU cache

P = init_point(x, y, ec) & B Victim Attacker
[...]

nb hits; 2

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) <

cond (A)
if y = fmt mod 2: probe (B)
A

— y = ec.p -y &

B cond (A)

probe (B)

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o]
nb hits: 3

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

ﬁush(pDA)
def set_compressed_point(x, fmt, ec): ~ ——— T 00000,
y = compute_y(x, ec) % ‘”ﬁ:T“. condl(a)
- probe (B)
cond (A)
if y = fmt mod 2:
= y = ec.p -y 5i) 4
CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[...] .
nb hits: 3

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) ,éf’/”——_-\\\ B cond (A)

— 0
cond (A)
if y = fmt mod 2: \
probe (B)
A xS

y = ec.p -y & Q@,\@

CPU cache
— P = init_point(x, y, ec) & > B Victim Attacker

[...] :
nb hits: 3

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) <

cond (A)
if y = fmt mod 2: probe (B)
A

y = ec.p -y &

B cond (A)

probe (B)

CPU cache
— P = init_point(x, y, ec) & > B Victim Attacker

[...] .
nb hits: 4

return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec) < ’7 cond (A)

i probe (B)
cond (A) 3,
if y = fmt mod 2: — /
A

y = ec.p -y &

CPU cache
P = init_point(x, y, ec) & > B Victim Attacker
[.

o0]

nb hits: &4

— return P

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

Prefetcher-based Side Channel

Very accurate distinguisher, with a better
spatial resolution!

def set_compressed_point(x, fmt, ec):

y = compute_y(x, ec)

if y = fmt mod 2:
y = ec.p -y

P = init_point(x, y, ec)
[...]

return P

0.3 1
0.2
0.7

0

'

S&P20

ACSAC'20 This

 * Attacker always flush A and F+R B
 * Once the victim reaches the branch: (i) A is fetched to be executed; (ii) B is prefetched.
 * Attacker immediately flush out A, and notice that B is in the cache, before flushing it
 * Since A has been flushed while the victim was still executing it, they need to fetch it back, triggering, once again, the prefetcher on B, leading to a new hit for the attacker.
 * Flushing A will both serve has a PDA, making the attacker got through multiple F+R cycles, and a prefetcher trigger, causing those hits.

	Appendix
	Appendix

