
Poster: Evaluating Black-Box Testing Tools

Esteban Alejandro Armas Vega, Ana Lucila Sandoval Orozco, Luis Javier Garcı́a Villalba∗

Group of Analysis, Security and Systems (GASS)
Department of Software Engineering and Artificial Intelligence (DISIA)

Faculty of Computer Science and Engineering, Office 431, Universidad Complutense de Madrid (UCM)
Calle Profesor José Garcı́a Santesmases, 9, Ciudad Universitaria, 28040 Madrid, Spain

Email: esarmas@ucm.es, {asandoval, javiergv}@fdi.ucm.es

Abstract—The benchmarking of tools for dynamic analysis
of vulnerabilities in web applications is something that is
done periodically. Unfortunately, the vast majority of these
evaluations are made by software enthusiasts who publish
their results on blogs or on non-academic websites and always
with the same evaluation methodology. Similarly, academics
who have carried out this type of analysis from a scientific
approach, the majority, make their analysis within the same
methodology as well the empirical authors. This paper is based
on the interest of finding answers to questions that many users
of this type of tools have been asking over the years, such as, to
know if the tool truly test and evaluate every vulnerability that
it ensures do, or if the tool, really, deliver a real report of all
the vulnerabilities tested and exploited. This kind of questions
have also motivated previous work but without real answers.

1. Introduction

Web applications manage, receive, send and store much
of information which, in most cases, is personal and con-
fidential, therefore, security within these web applications
should be a number one priority. Use of dynamic analysis
tools to improve the security within web application reduces
time and effort and allows to focus on more complex safety
tasks [1]. Such tools, for those who are not familiar with
this kind of sofware are not trivial to set up correctly [2].

The aim of this work is to evaluate most of the generated
data over the interaction between the black-box tools and the
analyzed web applications. This is achieved by gathering
carried out attacks and also the alerts and vulnerabilities
showed in the report. All this obtained information was
contrasted and compared.

2. Black-box Testing Tool

The black-box analysis type, analyzes the security of a
web application without any interaction with the source code
or with a previous knowledge of its structure. This approach
allows to analyze the web application in a simulated produc-
tion environment [3], the same environment as the attacker

will see. The Figure 1 shown the common interaction of a
black-box testing tool.

• The first phase of Black-box analysis is the passive
stage in which the pentest tool analyze the compo-
nents (pages, forms and links) of a web application
to find all the inputs within the web site, this phase
is also known as crawling phase.

• The second phase of Black-box analysis is the
active stage in which the pentest tool generates
malicious inputs that send to the target application
through the found inputs in the passive phase and
analyze the response from the web application to
determine if there are or not a vulnerability. The
generated report consist of the potential vulnerabil-
ities within the application that can be used by an
attacker.

3. Experiments and Results

The system was run on two computers, one attacker
and another as a server. Both are connected by a physical
network and a network router. The Table 2 shows the

Figure 1: Black-box Testing Interaction



TABLE 1. RESULTS OF ANALYZE DVWA

Vulnerability
Wacko

IDS
Acunetix

IDS
OWASP

IDS
HP Web

IDS Arachni
Picko WVS ZAP Inspect

Reflected Cross Site Scripting 1
X

1
X

2
X

5
X

1
Persistend Cross Site Scripting 1 4 1 - 2
SQL Injection 2 X 4 X 1 X 3 X -
Blind SQL Injection 1 X 3 - - X - - -
Cross Site Request Forgery 1 - - - - - - - -
Local File Inclusion 1 X - - - - - - 1
Command-line Injection 1 X 2 X 1 X 1 X -
Path ravesal - X 1 X 1 X 11 X 1
DoS - X 1 X - X - - -
Remote File Inclusion - - - X 1 - - X 1

TABLE 2. TEST ENVIRONMENT FEATURES

Macbook Pro Mac Mini
Attacker IDS Web Server

SO
Windows 7.1
Profesional

Ubuntu Server
14.04 LTS x86

Ubuntu Server
14.04 LTS x86

Hardware
8GB Ram,

Intel Core i5 2.7GHz

1GB Ram,
1 CPU,
(Virtual)

1GB Ram,
1 CPU,
(Virtual)

Software

Acunetix WVS,
OWASP ZAP,

HP Webinspect,
Arachni

Snort IDS,
MySQL,

Barnyard2,
Snorby

Apache 2,
MySQL,
DVWA,
Darkstat

characteristics of each one of the components used in the
experiments of this paper.

Each tool has been use once and separately. At the end
of the analysis with each tool both, web server and SNORT,
have been reset. In each single tests the reports generated
by SNORT alerts are compared. All of the vulnerabilities of
the evaluated web application and the report generated by
each of the pentesting tools have been taken into account.

The DVWA application analysis with Acunetix WVS
not reported the vulnerability Local File Inclusion. This
vulnerability is present in DVWA and according to alerts
SNORT was a vulnerability exploited during the analysis.
But Acunetix WVS do not included it in its final report. With
the OWASP ZAP tool do not differ from those obtained
in previous studies [2]. According to the SNORT reports
OWASP ZAP do not tests all of OWASP top 10 OWASP
[4] vulnerabilities. The analysis with HP WebInspect was
the longest, although it was the tool that found less vulner-
abilities. On the positive side, the number of false positives
in the report were the lowest. The analysis with Arachni,
identified 5 of total vulnerabilities with a low number of
false positives. SNORT identified attacks which Arachni did
not show it in the report.

A summary of the results obtained from the analysis of
DVWA with those tools can be shown in the Table 1.

4. Conclusion

The approach proposed in this paper allowed to obtain
details on the results that in previous work were not consid-
ered. The evaluated tools showed deficiencies to identifying
vulnerabilities in the tested web applications.

Most of the tools that were used in this paper demon-
strated that attacks were made and confirmed by SNORT,
but in the final report of the tool was not considered as vul-
nerable, despite its existence in the application. In addition
becames clear that there was not carried out attacks in search
of at least OWASP TOP 10 2013. This can be considered as
a disadvantage in these tools, mainly because its intention
is to cover at least the vulnerabilities more important and
documented and that according to reports obtained in this
work was not done.

Acknowledgements

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation
programme under grant agreement No 700326. Website:
http://ramses2020.eu

References

[1] P. Baral. Web Application Scanners: A Review of Related Articles.
IEEE Potentials, 30(2):10–14, March 2011.

[2] Y. Makino and V. Klyuev. Evaluation of Web Vulnerability Scanners.
In Proceedings of the IEEE 8th International Conference on Intelli-
gent Data Acquisition and Advanced Computing Systems: Technology
and Applications (IDAACS), volume 1, pages 399–402, Warsaw, PL,
September 2015.

[3] A. Sagala and E. Manurung. Testing and Comparing Result Scan-
ning Using Web Vulnerability Scanner. Advanced Science Letters,
21(11):3458–3462, November 2015.

[4] The Open Web Application Security Project OWASP. OWASP Top
10 - 2013 The Ten Most Critical Web Application Security Risks.
Release, The Open Web Application Security Project OWASP, June
2013.

http://ramses2020.eu

	Introduction
	Black-box Testing Tool
	Experiments and Results
	Conclusion
	References

