
Poster: RESCUE: The New Approach to Cloud-based Disaster Management

Elochukwu Ukwandu, Prof William J Buchanan

The Cyber Academy, Edinburgh Napier University, Edinburgh. UK

e.ukwandu@napier.ac.uk, w.buchanan@napier.ac.uk

Dr Gordon Russell
The Cyber Academy, Edinburgh Napier University, Edinburgh. UK

g.russell@napier.ac.uk

Abstract

Context: There are many risks in moving data into public

cloud environments, along with an increasing threat around

large-scale data leakage. This includes weaknesses around the

loss of encryption keys and also for a large-scale data loss on

an outage. The current practice in cloud-based disaster

management see disaster management as a way of bringing

system back online after the disasters not as a way of

mitigating such occurrence by providing a full-proof resilient

system that can withstand disaster scenarios thereby providing

a zero system downtime. Overall this work aims to apply

secret sharing methods as used in cryptography alongside data

fragmentation technique to create robust and secure Cloud-

based data storage, including mitigating disaster and providing

self-healing.

Related work: Nojoumian et al defined a principle of a social

share, which is a scheme used to break data into shares and

distribute to hosts dynamically based on reputation and their

interactions with other hosts. Their work applied the method

in cloud computing to create a self-organising system. A

drawback of this approach is that the distribution is based on a

calculated trust function and in disaster management each host

is contracted based on service level agreement (SLAs), which

cannot be fully trusted, and moreso, disaster cannot be judged

most often using social function as some are natural while

others are man-made. We therefore tend to modify the system

by removing the aspect of trust function and replacing with

host monitoring for efficient and timely information on the

host performances during system interactions. The essence is

to implement a break-glass system in a case of adverse host

failures.

Contribution: This work outlines a method to split large sized

data into chunks based on a specified chunks size, encrypt the

chunks, and use secret sharing to share encryption key based

on the secret sharing policy of say 3 from 5 and distribute

equal number of encrypted chunks and shares to each host and

using a host monitor provide information on access denial

rate, which helps to implement a break-glass mechanism in a

case of a predefined adverse denial rate. This aims to improve

on data availability, mitigate losses, eliminate key

management problem and provide self-healing. In the case the

data size is not large, the data is broken into shares using a

secret sharing policy as stated above and equal shares

distributed to each host based on the number of host’s

subscription. The policy determines the number of shares

made out of secret (data/key) and the required number of hosts

(threshold) capable of reconstructing the secret, whereas any

number less than the threshold cannot. Using the concept of

modified social secret sharing scheme, the share hosting will

be dynamic based on certain predetermined factors. This

implies that though shares are distributed evenly, accessing

each share from a host will be dynamic based on prevailing

factors as reported by the host monitoring.

Implementation: The implementation involves providing data

security in a keyless manner, with in-built failover protection,

to build on self-healing, consistent data availability using a

dynamic share hosting and resilience. The system will scale up

the experiment using public clouds and with a key metrics of

effects of latency on performance, keyless security and

availability.

Results

Table 1: Share Creation against Policy

 Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB) Creation Time Creation Time Creation Time

1 1 0.106119 0.10933 0.143713

2 10 0.913352 1.075088 1.427096

3 100 1.833184 2.115918 2.461108

Fig. 1: Time taken to Create shares of data against Share Policy

Table 2: Writing shares against Policy

 Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB) Writing Shares Writing Shares Writing Shares

1 1 0.020532 0.03125 0.164257

2 10 0.066987 0.100468 0.03355

3 100 0.090945 0.085788 0.068099

Fig. 2: Time taken to Write shares of data against Share Policy

Table 3: Share recovery against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB) Share recovery Share recovery Share recovery

1 1 0.008113 0.004693 0.015012

2 10 0.083933 0.009362 0.005608

3 100 0.025136 0.010948 0.008912

Fig. 3: Time taken to Recover shares of data against Share Policy

Table 4: File Recreation against Policy

Policy: 2 from 5 3 from 5 4 from 5

S/N File Size (KB) File Recreation File Recreation File Recreation

1 1 0.03405 0.054628 0.10265

2 10 0.434176 0.558682 0.92636

3 100 0.674842 1.091936 1.704002

Fig. 4: Time taken to Recreate File against Share Policy

Evaluation of the results: Secret sharing schemes have been

used successfully in data splitting and reconstruction, thereby

providing data security in a keyless manner. This section

outlines an experiment involving two main methods of secret

sharing application – data sharing and key sharing. In data

sharing, every data is treated as sequence of bytes so file types

does not matter and file size must not exceed certain threshold

as Secret sharing algorithm is built on finite field arithmetic

known as Galois field (2
16

). The evaluator in this case is the

performance overhead at an increasing thresholds and data

sizes. The results in figures 1 and 4 show normal distribution,

but that of 2 and 3 did not, indicating the effect of share policy

on the system. The experiment shows that decreasing the

threshold rather adds more overhead to the system than

expected as indicated in figure 3. More experiments have been

performed on using Data Splitting and Recreation for large

sized data in conjunction with Secret sharing scheme in safe

guarding encryption key but cannot be used here for space.

Increasing the size of data adds more performance overhead

while key sharing shows slightly higher overhead in key

recovery and file decryption than file encryption and key

sharing. These depict their strengths and weaknesses at

different application scenarios.

The aim of the experiment is to demonstrate the implication

variance in data size, and key sharing policy have on the

performance of secret sharing scheme (SSS) algorithm in

terms of share creation and share recreation in case one wants

to apply any in cloud-based designs and varied data sizes were

evaluated. The test machine is a Duo Core Intel Pentium

N3530 2.16GHz, 2.16 GHz, 64bit x64-based processor,

Windows 8 operating system on 4GB of RAM.

Four primary sets of results were presented which use the

parameters of N=2, M=5; N=3, M=5; and N=4, M=5. The

variable N relates to the number of shares required for

recreation of the original arbitrary data (using each SSS

algorithm), while M relates to the number of shares to be

created. Results are presented in seconds for Time taken,

while KB for Data sizes. From the figures and tables

presented, it can be clearly demonstrated that key share policy

has effect on the time taken to write and recover shares and

therefore important factors in choosing location of cloudlets to

host shares.

