Poster: Decentralizing PKI with SDSI Keychains

Harry Halpin
Inria
Paris, France
harry.halpin@inria.fr

Abstract—One of the key problems facing security has
been a coherent way to refer to and access key material
in a decentralized fashion, given the many usability failures
of traditional PKI schemes based on X.509. In this concept
note, we propose re-purposing the access control scheme
SDSI (Simple Distributed Security Infrastructure) for use with
blockchains (i.e. append-only logs of key material). SDSI is a
long-standing and well-studied alternative to the hierarchical
X.509 infrastructure, but failed to be adopted due to problems
with key discovery and revocation, both of which can be solved
using blockchain technology.

I. THE PUBLIC-KEY INFRASTRUCTURE PROBLEM

The problem of Public Key Infrastructure (PKI) is how
to bind an identity of a principal (user, organization, etc.)
to a key. This “PKI problem” has been one of the most
long-standing and hardest problems facing the adoption of
public key cryptography. The X.509 certificate infrastructure
operates in theory as a centralized key directory, and in
practice the X.509 standards were added post-hoc to the
centralized domain name system (DNS) and TLS via Cer-
tificate Authorities. The X.509 PKI system has been thought
of as a failure, as compromises in the certificate authority
system have led to fake certificates being issued without
being detected. For emerging technologies based on public
cryptography, including blockchain technologies and secure
messaging, the problem of binding a key to a user has been
solved in an ad-hoc manner.

It may very well be time for new technologies to revisit
the road not taken by the Web: the Simple Distributed Secu-
rity Infrastructure (SDSI) of Rivest and Lampson. Similar to
Bitcoin, principals are identified with keys, in particular with
digital signature keys. Also similar to blockchain technolo-
gies but in contrast to X.509, each principal is a “certification
authority” where “certificates can be created and signed by
anyone”[4]. Unlike X.509 PKI, local name-spaces can be
created where a principal may associate any arbitrary naming
convention with a key. These local names can be explicitly
linked across namespaces without centralized permissions.
Although the failure of SDSI has been attributed simply
to various accidental factors (i.e. it being produced by
academics after X.509), there is a outstanding problem with
SDSI: Due to its decentralized nature, it was impossible to
tell if a key was the latest key, or if a key had been revoked.
Key revocation and rotation were considered to be dealt with

by “self destruct” or “key update” messages that invalidate
keys for a given identifier or bind them to new identifiers,
but this work was left undefined [1].

II. SDSI1.0

Traditionally, SDSI can be defined as the following: Given
K as the set of public-private key-pairs (K; = (pk;, sk;))
and a set A of identifiers (usually strings), in SDSI a local
name is a map between an key and one or more identifiers
(K = A). A certificate is a binding between values and
a name, is a signed tuple (K, A, M) where M provides
any additional metadata, including but not limited to the
validity period of the key. K is the keypair used in signing
the certificate. A valuation function for a given identifier A;
is V(A;) = K, a (possibly empty) set of public keys for a
given term. Valuation can be defined and implemented as a
set of rewrite rules [1]. These rewrite rules allow for a given
key the discovery of all associated identifiers for a given
key or for a given key to find all associated identifiers and
certificates, but these rules simply find all keys. As the set
of keys found by V(A,) could be potentially very large and
there is no necessary connection between keys other than
possible metadata in M, in practice SDSI did not deal with
key handling, discovery, revocation, expiration, and rotation.

SDSI allows the export and linking of local names. For
example, (K; Nakamoto) binds public key K; to the
identifier Nakamoto in a name space (such as Alice’s names-
pace), perhaps including additional information in a certifi-
cate such as (K, Nakamoto, creator of Bitcoin,
31-8-2008). Then Bob can make statements about who
Alice thinks Nakamoto is such as (Alice’s Nakamoto
Szabo). SDSI can export (Bob’s Nakamoto) to refer
to an entirely different key (Bob’s Nakamoto Adam)
where (K5 Adam). The identifier Nakamoto can be used
by any other namespace, such as Eve, to identify another
key (K35 Nakamoto) or to associate more identifies with
the identifier .

Access control is the motivating use-case of SDSIL
Traditionally, SDSI defines groups as a set of principals.
A group as such does not have its own key, and each
member of the group may offer their key as a proof
of their membership in the group. Classically groups
can be defined via use of the reserved term Group and
logical AND, OR, NOT as well as ALL, MINUS

(for exclusion of principals) and ANY. For example,
(DAO’ s decision-makers (Group: (OR:
eth-core-dev (AND: investor boardmember
))) defines a group for the DAO’s decision-makers where
one must be either an Ethereum core developer or an
investor and board member to make a decision on a smart
contract.

III. USING KEYCHAINS TO SUPPORT SDSI

SDSI keychains is the use of SDSI where a simplified
blockchain of keys rather than keys are the principal. In
terms of blockchain technologies, only a simple authenti-
cated append-only list of keys that is authenticated via hash
pointers is needed, with the key of each block signing the
previous block. This design has been called claimchains in
a general framework [2]. This use of a claimchain for a
keychain is similar to the more complex work put forward
in CONIKS [3], where each keychain incorporates a Merkle
Tree so that verifying the presence of a key in a keychain can
be done efficiently, and the head imprint (i.e. the hash of the
latest key) can witness the state of an entire keychain. These
head imprints may also be stored inside other keychains so
that statements may be made about these heads in order to
make statements about another keychain at a given moment
in time, allowing the linked local namespaces of SDSIL

Given standard cryptographic definitions, a SDSI tuple
S; = (K, A, M) and its hash H(S;) = H(K || A || M)
and M must include ¢, time of tuple creation. A keychain
is an ordered sequence of keyblocks B = {By, B1, ..., Bp}.
Each keyblock B; = (S;, P;,0;) in our chain comprises a
SDSI tuple S;, and a set of hashes of previous blocks P;
and a signature 0; = SIGgy (H(H(S;) | F;)) with sk;
of K;. Keyblocks so have a global strict ordering as defined
by the index 4, with the latest keyblock i = max so Bax
has a unique key K,q.. All statements A are assumed to
apply to the principal defined by B unless the statement is
explicitly revoked.

Keys can be revoked by including a revocation statement
as part of M = (K,cw, R,t) where R is revocation made at
time ¢ with a new signing key for subsequent keyblocks
given by K,.,. Statements can be revoked by signing
new statements later in the blockchain using an explicit
revocation statement over the previous statement. The latest
key can always be found at the head keyblock as each block
has a single signing key, as well as proof of any key rotations
and revocations via the aforementioned efficient search for
older keys [1]. Statements range over entire histories of
keys, rather than just keys, and blocks of statements (such
as revocation statements or the addition of new keys) can
always be authenticated. We still allow, like the original
SDSI, V(A;) to result in multiple keychains, but they can
be compared and a latest key always found by looking at
the creation time ¢ of the blocks in case multiple keychains
with differing values of B,,,, are found. From this simple

mechanism, the entire group-based access control design
of SDSI using straightforward logical operators over key
material can be rebuilt using keychains rather than keys.
Unlike the original SDSI, given a single key, we can find the
latest key and any new identifiers given in the authenticated
history of this key.

IV. NEXT STEPS

We’ve outlined the usage of SDSI over blockchains, where
rather than keys being principals as in normal usage of SDSI,
blockchains consisting of an append-only log of keys are
given as principals. This gives a flexible way for metadata
to be associated with the state of a given blockchain at
a given time, and for blockchains to refer to each other.
Using the well-explored space of SDSI name resolution,
local names can then be resolved to the state of SDSI-
enabled keychains, and the latest key in a given keychain can
be used for cryptographic operations, with key revocation
being recorded by the blockchain for a given key. We have
only sketched the design, and full definitions with a formal
semantics for access control is needed in future work. It is
widely-accepted that the adoption of hierarchical public key
infrastructure for the Internet was a mistake, and there’s no
reason for blockchain researchers have to repeat the mistakes
of the past. With SDSI for blockchains, we can rely on
a well-founded cryptographic framework for decentralized
identity, not having to repeat the Web’s mistakes.

ACKNOWLEDGMENT

This work was funded by European Unions Horizon
2020 Framework Programme for Research and Innova-
tion (H2020-ICT-2015, ICT-10-2015) under grant agreement
number 688722. This use of SDSI for access control derived
from work-in-progress on “Claimchain” done by partners
George Danezis, Bogdan Kulynych, Marios Isaakidis, and
Carmela Troncoso for D2.2 of NEXTLEAP.

REFERENCES

[1] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette,
Alexander Morcos, and Ronald L Rivest. Certificate chain
discovery in SPKI/SDSI. Journal of Computer Security,
9(4):285-322, 2001.

[2] George Danezis, Bogdan Kulynych, Carmela Troncoso, Marios
Isaakides, and Harry Halpin. Claimchains: A decentralized
identity system based on hash chains, 2016.

[3] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Ed-
ward W. Felten, and Michael J. Freedman. CONIKS: bringing
key transparency to end users. In Jaeyeon Jung and Thorsten
Holz, editors, 24th USENIX Security Symposium, USENIX
Security 15, pages 383-398. USENIX Association, 2015.

SDSI-A Sim-
CRYPTO, 1996.

[4] Ronald L Rivest and Butler Lampson.
ple Distributed Security Infrastructure.
http://people.csail.mit.edu/rivest/sdsi10.html.

