
Smarter Signatures
Experiments in Verification

Christopher Allen, Shannon Appelcline

Berkeley, USA

ChristopherA@blockstream.com, ShannonA@skotos.net

Abstract—Digital signatures are a fundamental aspect of

identity on the internet, used in technologies such as certificates,

secure logins, and blockchains. However, today’s signatures are

simplistic: they can be improved to create more powerful and

more complex signatures that are smarter.

Keywords—smart signatures; multisignatures; delegation;

identity; predicate language; secure language

I. INTRODUCTION

The traditional usage of digital signatures is quite
straightforward. The owner of a cryptographic identity signs a
message (or a certificate) with his private key; a recipient can
then use the related public key to verify the message.

However, digital signatures can do much more. Some
technologies already support multisignatures, which can be
signed by multiple people from a larger group. But even that
doesn’t support the full richness of business and computer
logic that is becoming a part of our digital life. Simple
signatures can’t offer the flexibility that is needed by modern
enterprises, and they can’t offer the reliability that is required
for modern finances.

To support these needs requires a new kind of signature —

a smarter signature that increases options while still meeting
the responsibilities of a robust and trusted signature system.

II. DESIGNING SMART SIGNATURE SYSTEMS

Designing a smarter signature system requires an
understanding of the potential uses of smart signatures and the
potential pitfalls.

A. The Use of Smart Signatures

The core use of a signature is verification: a signature must
ensure that the authorization conditions required for a task are
met. In the world of simple signatures, that meant verifying
that the right person signed a message. However smart
signatures have a wider scope, supporting more use cases.

1) Multifactor Expressions. A smart signature should

support the inclusion of multiple elements within a single

signature. This should include a variety of multisignatures —

 including N of N signatures, M of N signatures, and

signatures with logical ORs. It should also include other

varied signature elements, such as biometric signatures and

proof of hardware control.

2) Signature Delegation. A key holder should be able to

precisely control how a smart signature is used. He should be

able to delegate its use to others with limits based on time,

use, or content, and he should be able to pass on control of a

smart signature if his own usage of a key ceases.

3) Internal Depth. A smart signature should support

internal depth by combining these different possibilities. For

example, a development release of software could include

both multifactoring and delegation by requiring 3-of-5

signatures, where one signer has authorized his assistant

because he’s on leave, and another signer requires 2-of-2 keys

for his signature, one of which is stored on a hardware token.

Because this depth is created through internal links, the

requirements are all evaluated synchronously.

4) Transactional Support. A smart signature system

should support external depth by being able to prove that

specific states have been reached in a larger state machine

through the chaining of multiple signatures. For example, an

art dealer might need to examine the transactional history of a

painting to ensure that he’s not purchasing stolen goods.

Because this depth is created through external links, the

requirements tend to be evaluated asynchronously: one smart

signature at a time.

These use cases all focus on the creation of signatures,
providing functionality that signers need. However, there are
always two users for any signature: the signer and the verifier.
Additional verifier-focused use cases may illuminate UI and
UX requirements for a smart signature system.

B. The Requirements of Smart Signatures

Because smart signatures offer increased complexity over
simple signatures, care must be taken to avoid security pitfalls.
To ensure this, six requirements are suggested for the creation
of smart signature systems:

1) Composable. The increased complexity of smart

signatures requires that they be built using some sort of

programming language. However, the language itself must

remain simple, with complexity built up from a constrained set

of operations

2) Inspectable. Signatures must be easily understandable

by a qualified programmer, so that any sophisticated user can

readily evaluate the elements of a signature and how they will

be verified. This requirement often emerges naturally from

composability.

mailto:ChristopherA@blockstream.com
mailto:ShannonA@skotos.net

3) Provable. Signatures must be formally analyzable, so

that they can support logical reasoning and so that

sophisticated users and expert computer tools can have

foreknowledge of the requirements of verification.

4) Deterministic. Signatures must always produce the

same results, even when run on different machines or different

operating systems.

5) Bounded. Signatures must not be able to exceed

appropriate CPU or memory limitations through creation of

malicious (or bad) signings. They need to minimize their size

in order to minimize bandwidth and storage costs.

Additionally, enforcement of these limitations must be

deterministic.

6) Efficient. Though we place no requirements on the

difficulty of creating signatures, the cost of verifying them

should be very low.
Together, these requirements insure the security of the

signature language, of the individual signatures, and of the
system running the signatures.

The element of privacy should also be considered. In smart
signature design, there is a trade-off between flexibility and
fungibility: many of the functions that make signatures smarter
also require participants to reveal more about who they are,
reducing the substitutability of the persons involved in the
signatures and of any resources being signed. Even if privacy is

not a requirement, it should be a consideration; any decisions
about the level of privacy in a signature system should be
known and purposeful.

III. EXPERIMENTS IN SMART SIGNATURES

Fulfilling these uses and meeting these requirements for
smart signatures necessitates the creation of better languages
and better tools. A number of promising program languages
each have their own strengths and weaknesses.

A. Bitcoin Script

Bitcoin Script already exists and is being used to safeguard
millions of dollars worth of transactions [1]. It currently
authorizes the spending of bitcoins, primarily with single
signatures or M-of-N multisignatures. However, it’s possible to
encode more complex redemption conditions into a Bitcoin
Script, and even to keep them secret — allowing a recipient to
prove that he met the signing conditions by matching a hash of
those conditions. Though currently used on the blockchain,
Bitcoin Script could be used as a the basis of a generalized
smart signature language outside of those contraints.

B. Dex

Peter Todd is working on another possible system for smart
signatures, one that he calls Dex, a system of deterministic
predicate expressions [2] [3]. As the name suggests, it’s
deterministic, guaranteed to always return the same result for a
specific signature and environment. Dex also more fully
embraces functional programming thanks to its basis in lambda
calculus. Functional programming languages tend to be an

excellent choice for smart signature languages: besides being
deterministic, they’re also composable and provable.

C. Crypto Conditions

Crypto-conditions [4] were developed by Stefan Thomas as
part of the Interledger project. The protocol relies on one or
more ledgers that are involved in an end-to-end transfer being
able to put funds on hold pending the fulfillment of a
predefined condition. This condition is, in effect, the definition
of a smart signature, and the fulfillment of that condition is the
signature itself.

D. Sequent Calculus

Sequent Calculus [5] [6] offers another approach to smart
signatures. It can create smart signatures as formal proofs,
where simpler proofs are functionally combined to ultimately
create smarter signatures that are analyzable formally. This
methodology is currently being studied by another author, with
a full paper pending.

IV. CONCLUSION

Whatever language is used, a smart signature system that
supports these uses, that meets these requirements, and that
considers its privacy implication, would add powerful tools to
the digital world by meeting the needs of the financial and
business worlds.

ACKNOWLEDGMENT

This paper is based on the longer “Smarter Signatures:
Experiments in Verifications” [7] that was an output of the
Rebooting the Web of Trust II: ID2020 Design Workshop.

REFERENCES

[1] C. Allen, G. Maxwell, P. Todd, R. Shea, P. Wuille, J. Bonneau, J. Poon,
and T. Close. “Smart Signatures”. Rebooting the Web of Trust I.
https://github.com/WebOfTrustInfo/rebooting-the-web-of-
trust/blob/master/final-documents/smart-signatures.pdf. 2015.

[2] P. Todd. “Dex: Deterministic Predicate Expressions for Smarter
Signatures”. Rebooting the Web of Trust II: ID2020 Workshop.
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blo
b/master/topics-and-advance-
readings/DexPredicatesForSmarterSigs.md. 2016.

[3] P. Todd. “Building Blocks of the State Machine Approach to
Consensus”. Peter Todd. https://petertodd.org/2016/state-machine-
consensus-building-blocks. 2016.

[4] S. Thomas. "Crypto Conditions". GitHub.
https://github.com/interledger/rfcs/tree/master/0002-crypto-
conditions.

[5] Ariola, Zenn M., Aaron Bohannon, and Amr Sabry. 2009. "Sequent
Calculi and Abstract Machines". ACM Transactions on Programming
Languages and Systems.
http://www.cs.indiana.edu/~sabry/papers/sequent.pdf.

[6] N. Guenot and D. Gustafsson. "Sequent Calculus and Equational
Programming". IT University of Copenhagen.
http://arxiv.org/pdf/1507.08056.pdf. 2015.

[7] C. Allen, S. Appelcline. “Smarter Signatures: Experiments in
Verification”. Rebooting the Web of Trust II.
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blo
b/master/final-documents/smarter-signatures.pdf. 2016.

https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/rebooting-the-web-of-trust/blob/master/final-documents/smart-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/topics-and-advance-readings/DexPredicatesForSmarterSigs.md
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/topics-and-advance-readings/DexPredicatesForSmarterSigs.md
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/topics-and-advance-readings/DexPredicatesForSmarterSigs.md
https://distrinet.cs.kuleuven.be/research/taskforces/showTaskforce.do?taskforceID=seclang
https://distrinet.cs.kuleuven.be/research/taskforces/showTaskforce.do?taskforceID=seclang
https://github.com/interledger/rfcs/tree/master/0002-crypto-conditions
https://github.com/interledger/rfcs/tree/master/0002-crypto-conditions
http://www.cs.indiana.edu/~sabry/papers/sequent.pdf
http://arxiv.org/pdf/1507.08056.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/final-documents/smarter-signatures.pdf

