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Compiled partial programs evolve within a low-
level environment, with which they can interact.
Such interaction is useful — think of high-level pro-
grams performing low-level library calls, or of a
browser interacting with native code that was sent
over the internet [19] — but also dangerous: parts of
the environment could be malicious or compromised
and try to compromise the program as well [7, 19].
Components written in unsafe languages such as C
and C++ can be vulnerable to control hijacking at-
tacks [7, 18] and be taken over by a remote attacker.
When the environment can’t be trusted, it is a major
concern to ensure the security of running programs.

With today’s compilers, low-level attackers [7] can
circumvent high-level abstractions [1,13] and are thus
much more powerful than high-level attackers, which
means that the security reasoning has to be done at
the lowest level, which it is extremely difficult. An
alternative is to build a secure compiler that ensures
that low- and high-level attackers have exactly the
same power, allowing for easier, source-level security
reasoning [2, 9, 10, 16]. Formally, the notion of se-
cure compilation is usually expressed as full abstrac-
tion of the translation [1]. Full abstraction is a much
stronger property than just compiler correctness [14].

For a compiler targeting machine code, which lacks
structure and checks, a typical low-level attacker has
write access to the whole memory, and can redirect
control flow to any location in memory [7]. Tech-
niques have been developed to deal with such pow-
erful attackers, in particular involving randomiza-
tion [2] and binary code rewriting [8]. The first ones
only offer weak probabilistic guarantees, while the
second ones add extra software checks which often
come at a high performance cost. Using additional
protection in the hardware can result in secure com-
pilers with strong guarantees [16], without sacrific-
ing efficiency or transparency. In our work, we use a
generic tag-based protection mechanism called micro-
policies [5, 6] as the target of a secure compiler.

Micro-policies provide instruction-level monitoring

based on fine-grained metadata tags. In a micro-
policy machine, every word of data is augmented with
a word-sized tag, and a hardware-accelerated monitor
propagates these tags every time a machine instruc-
tion gets executed. Micro-policies can be described
as a combination of software-defined rules and mon-
itor services. The rules define how the monitor will
perform tag propagation instruction-wise, while the
services allow for direct interaction between the run-
ning code and the monitor. This mechanism comes
with an efficient hardware implementation built on
top of a RISC processor [6] as well as a mechanized
metatheory [5], and has already been used to enforce
a variety of security policies [5, 6].

Recent work [4, 16] has illustrated how protected
module architectures — a class of hardware architec-
tures featuring coarse-grained isolation mechanisms
— can help in devising a fully abstract compilation
scheme for a Java-like language. This scheme as-
sumes the compiler knows which components in the
program can be trusted and which ones cannot, and
protects the trusted components from the distrusted
ones by isolating them in a protected module. This
kind of protection is only appropriate when all the
components we want to protect can be trusted, for
example because they have been verified [3]. Ac-
counting for the cases in which this is not possible,
we propose a stronger attacker model of mutual dis-
trust [12]: in this setting a secure compiler should
protect each component from every other compo-
nent, so that whatever the compromise scenario may
be, uncompromised components always get protected
from the compromised ones.

This new attacker model for secure compilation
extends the well-known notion of full abstraction
to ensure protection for mutually distrustful compo-
nents. We devised a secure compilation solution for a
simple object-oriented language that defends against
this strong attacker model [11, 12]. Our solution in-
cludes a simple compiler chain (compiler, linker, and
loader) and a novel micro-policy that protects the ab-
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stractions of our simple language—class isolation, the
method call discipline, and type safety—against arbi-
trary low-level attackers. Enforcing a method call dis-
cipline and type safety using a micro-policy is novel
and constitutes a contribution of independent inter-
est. We have started proving that our compiler is
secure, and we have good hopes in the efficiency and
transparency of our solution for the protection of re-
alistic programs. We also have ideas for mitigation
when our mechanism is not transparent enough.

In independent parallel work [15, 17], Patrignani
et al. are trying to extend previous results [16] to
support mutual distrust using different mechanisms
(e.g. multiple protected modules and randomization).
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