# Basilic: Resilient Optimal Consensus Protocols With Benign and Deceitful Faults

#### Alejandro Ranchal-Pedrosa<sup> $\dagger, \ddagger$ </sup> Vincent Gramoli<sup> $\dagger, \$$ </sup>

<sup>†</sup>University of Sydney, Sydney, Australia

<sup>‡</sup> Protocol Labs

<sup>§</sup>EPFL, Red Belly Network



# Small Council

5 people, 2 Byzantine -> lose throne



# Small Council

5 people, 1 Deceitful, 1 non-responsive -> remove deceitful, 4 with 1 non-responsive



# Byzantine Generals Problem

#### Consensus problem:

- Agreement
- Termination
- Validity

# Impossibilities [LSP82, DLS88]

- Consensus only possible if t<n/3 (partial synchrony)
- Byzantine faults? meaning?
  - Worst type of fault
  - If non-responsive is worse for protocol -> non-responsive
  - If protocol-specific disagreement attack -> then that
  - Byzantine faults are important, but what if...

• What if not all faults in the system are the worst possible fault?

Goal

• What if not all faults in the system are the worst possible fault?

Goal

• Exploit potential heterogeneity of faults for greater tolerance

• What if not all faults in the system are the worst possible fault?

# Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t < n/3 if only Byzantines must be ensured

• What if not all faults in the system are the worst possible fault?

#### Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t < n/3 if only Byzantines must be ensured

#### Previous heterogeneous models

• Crash-faults and Byzantines

• What if not all faults in the system are the worst possible fault?

#### Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t < n/3 if only Byzantines must be ensured

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model

• What if not all faults in the system are the worst possible fault?

#### Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t < n/3 if only Byzantines must be ensured

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria

• What if not all faults in the system are the worst possible fault?

## Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t<n/3 if only Byzantines must be ensured

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria
- Commission and omission faults

• What if not all faults in the system are the worst possible fault?

# Goal

- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t<n/3 if only Byzantines must be ensured

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria
- Commission and omission faults
- Alive-but-corrupt model

• What if not all faults in the system are the worst possible fault?

## Goal

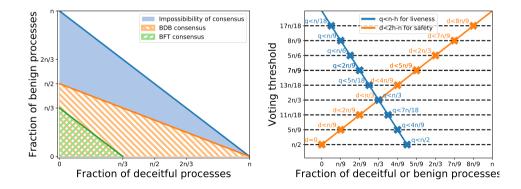
- Exploit potential heterogeneity of faults for greater tolerance
- Backwards compatibility: t<n/3 if only Byzantines must be ensured

- Crash-faults and Byzantines
- Byzantine-altruistic-rational Model
- (k,t)-robust equilibria
- Commission and omission faults
- Alive-but-corrupt model
- No previous works make a disjoint distinction between faults that attack agreement and faults that attack termination

# Byzantine-deceitful-benign (BDB) model

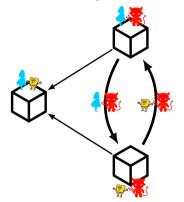
- Byzantine faults  $t \rightarrow$  arbitrary
- Deceitful faults  $d \rightarrow$  target agreement
  - Can prevent termination if trying to cause disagreement and failing, but always reply.
- Benign faults  $q \rightarrow$  can only prevent termination
  - Crash-faults, invalid messages etc.
- quorum size  $h \rightarrow$  greater for agreement, lower for termination

# **BDB** Impossibilities


• Impossible to tolerate t Byzantine, d deceitful and q benign processes if  $n \leq 3t + d + 2q$ .

#### **BDB** Impossibilities

- Impossible to tolerate t Byzantine, d deceitful and q benign processes if  $n \leq 3t + d + 2q$ .
- At most d + t < 2h n and  $q + t \le n h$ , with  $h \in (n/2, n]$ .

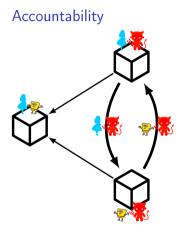

#### **BDB** Impossibilities

- Impossible to tolerate t Byzantine, d deceitful and q benign processes if  $n \leq 3t + d + 2q$ .
- At most d + t < 2h n and  $q + t \le n h$ , with  $h \in (n/2, n]$ .





#### Accountability






Accountability

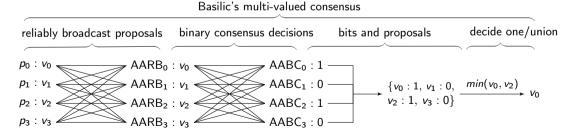
If 🐺 attacks agreement property, then 🐺 is caught. But... it could be too late.





If 🐺 attacks agreement property, then 🕷 is caught. But... it could be too late.

#### Active accountability


• Deceitful faults do not prevent termination

- Basilic: class of consensus protocols
  - Satisfy active accountability:
    - Periodically exchange messages after  $\delta$  in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate

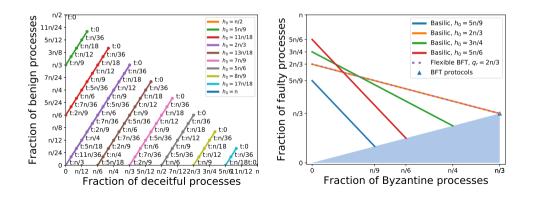
- Basilic: class of consensus protocols
  - Satisfy active accountability:
    - Periodically exchange messages after  $\delta$  in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
  - Same code, but protocols of the class change by the initial threshold  $h_0$  given as parameter

- Basilic: class of consensus protocols
  - Satisfy active accountability:
    - Periodically exchange messages after  $\delta$  in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
  - Same code, but protocols of the class change by the initial threshold  $h_0$  given as parameter
  - At any given time,  $Basilic(h_0)$  has a dynamic quorum size  $h(d_r)=h_0-d_r$

- Basilic: class of consensus protocols
  - Satisfy active accountability:
    - Periodically exchange messages after  $\delta$  in order to dynamically remove deceitful faults, reducing quorum size accordingly to terminate
  - Same code, but protocols of the class change by the initial threshold  $h_0$  given as parameter
  - At any given time, Basilic(h<sub>0</sub>) has a dynamic quorum size h(d<sub>r</sub>)=h<sub>0</sub>-d<sub>r</sub>



# Basilic class' BDB tolerance


#### Theorem

The Basilic protocol with initial threshold  $h_0$  solves consensus for  $d + t < 2h_0 - n$  and  $q + t \le n - h_0$ .

#### Basilic class' BDB tolerance

#### Theorem

The Basilic protocol with initial threshold  $h_0$  solves consensus for  $d + t < 2h_0 - n$  and  $q + t \le n - h_0$ .



Eventual consensus ( $\diamond$ -consensus)

Temporary disagreement, but eventual agreement.

Theorem The  $\diamond$ -Basilic protocol with initial threshold  $h_0$  solves the  $\diamond$ -consensus problem if  $d + t < h_0$  and  $q + t < n - h_0$ .

#### Complexities

- Active accountability has no increase on communication complexity compared to accountability.
- Accountability requires  $\mathcal{O}(n^3)$  if deceitful behavior causes disagreement and  $\mathcal{O}(n^2)$  otherwise (optimal for consensus).
- Same for active accountability:  $\mathcal{O}(n^3)$  if deceitful behavior causes disagreement OR prevents liveness, and  $\mathcal{O}(n^2)$  otherwise (optimal for consensus).

#### Conclusion

- BDB model exploits for heterogeneity of faults, without any real losses in classical BFT model (same complexities, same tolerances, no changes to protocol almost really).
- Basilic class is resilient optimal in both BDB and BFT fault models
- By dynamically removing deceitful faults  $\rightarrow$  active accountability
- Customizable depending on quorum size  $h_0$ 
  - open systems (e.g. Blockchains)  $\rightarrow$  greater threshold
  - closed systems (e.g. distributed database)  $\rightarrow$  lower threshold

Q/Aalejandro.ranchalpedrosa@sydney.edu.au