
Aslan Askarov

OblivIO:
Securing reactive programs by oblivious

execution with bounded traffic overheads

Jeppe Fredsgaard Blaabjerg

Aarhus University

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

<Alice/> <Bank/>

Traffic analysis
Example

2

channel ALICE/ERROR: (int*int);
var balance: int[];

TRANSFER(from: int, amount: int, to: int) {
if amount <= balance[from]
then {
balance[from] -= amount;
balance[to] += amount;

}
else send(ALICE/ERROR,(amount, balance[from]));

}

?

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Traffic analysis
Other observable properties of online communication

‣ Message timing

‣ Message size

‣ Message recipient

3

t6t5t4t3t2t1

AliceBob

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Mitigating traffic analysis
System-level mitigation

‣ Black-box

‣ Constant rate traffic of fixed-size packets

‣ Prohibitive overheads in practice: traffic or latency1

4

1 K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you: Why efficient traffic
analysis countermeasures fail,” in 2012 IEEE symposium on security and privacy. IEEE, 2012, pp. 332–346

Constant

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Example
What is the right system-level bandwidth?

5

channel FORWARD: int;
var cnd: int;

RELAY(x: int) {
if cnd
then send(FORWARD,x);
else skip;

}

‣ Traffic padding only needed if cnd is secret

‣ Not known at system level

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

≈L

Mitigating traffic analysis
Which messages are sensitive?

6

</>

</>

Depend on secrets Independent of secrets

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

≈L

Mitigating traffic analysis
Idea: Traffic padding guided by program source

7

</>

</>

Real

Dummy

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

‣ Simple imperative language for reactive programs

‣ Data-oblivious execution model2 — Control-flow is never secret

‣ Execution mode real or phantom can be secret

‣ Formal model includes computational history for computing timestamp3

p ::= ⋅ ∣ ch(x){c}; p
c ::= skip ∣ c1; c2 ∣ x = e ∣ if e then c else c ∣ while e do c ∣ send(ch, e)

∣ x ?= e
∣ oblif e then c else c
∣ x ?= input(ch, e)

OblivIO
Language and syntax

8

(* Oblivious, padding assignment *)
(* Oblivious conditional — executes both branches *)

 (* Local input *)

2 S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious computation,” IACR Cryptol.
ePrint Arch., p. 1153, 2015. [Online]. Available: http://eprint.iacr.org/2015/1153
3 I. Bastys, M. Balliu, T. Rezk, and A. Sabelfeld, “Clockwork: Tracking remote timing attacks,” in 2020 IEEE
33rd Computer Security Foundations Symposium (CSF). IEEE, 2020, pp. 350–365.

http://eprint.iacr.org/2015/1153

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Control flow

9

then else

oblif

0 :: b

0 :: 0 :: 0 :: b

0 :: 0 :: b

0 :: b

then else

oblif

1 :: b

b :: b′ :: 1 :: b

b′ :: 1 :: b

1 :: b

b ≠ b′

Oblivious conditional

Real Phantom

 is a stack of execution mode bits
 denotes real mode
 denotes phantom mode

b b
b = 1
b = 0

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Assignment

10

Oblivious assignment

x ?= “Hello”;

1 :: b, x ↦ ("Goodbye")7

1 :: b, x ↦ ("Hello")7

x ?= “Goodbye”;

0 :: b, x ↦ ("Hello")5

0 :: b, x ↦ ("Hello")7

Real Phantom

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Oblivious semantics
Sending

11

Send

send(ch,x);

1 :: b, x ↦ (v)z

1 :: b, x ↦ (v)z

⇝ ch1((v)z) send(ch,x);

0 :: b, x ↦ (v)z

0 :: b, x ↦ (v)z

⇝ ch0((v)z)

Real Phantom

Dummy

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Part a

12

Public guard
Non-public guard

Public pc Any pc

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Theorem
Soundness

‣ Soundness theorem

‣ Well-typed OblivIO programs do not leak by their traffic patterns

13

Attacker knowledge4

k(cfg, τ, ℓ) ≜ {cfg2 ∣ cfg ≈ℓ cfg2 ∧ cfg2 ⟶*τ2
cfg′ 2 ∧ τ ≈ℓ τ2}

Security condition

k(cfg, τ ⋅ α, ℓ) ⊇ k(cfg, τ, ℓ)

4 Askarov and A. Sabelfeld, “Gradual release: Unifying declassification, encryption and key release

policies,” 2007 IEEE Symposium on Security and Privacy.

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Example
Example 1 revisited

14

channel ERRORH: (intH*intH)H;
var balance: intH[]H;

TRANSFERL(from: intH, amount: intH, to: intH) {
oblif amount <= balance[from]
then {
balance[from] -= amount;
balance[to] += amount;

}
else send(ERROR,(amount, balance[from]));

}

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Problem
Unbounded number of dummy messages

15

channel pongH: intH;

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

channel pingH: intH;

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PING1(1)

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Problem
Unbounded number of dummy messages

16

channel pongH: intH;

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

channel pingH: intH;

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(0)
PONG1(1)

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Problem
Unbounded number of dummy messages

17

channel pongH: intH;

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

channel pingH: intH;

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(0)
PING0(0)
PING1(1)

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Problem
Unbounded number of dummy messages

18

channel pongH: intH;

PINGH (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

channel pingH: intH;

PONGH (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

Message queueMessage queue

PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG0(1)
PONG0(0)
PONG1(1)
PONG0(0)

⋮
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)
PING0(0)
PING0(1)

⋮

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Solution
Resource tracking in type-system

‣ Declare integer potential of a handler

‣ Spend potential when sending obliviously

‣ Oblivious send on channel with potential costs

- to pay for the message itself

- to pay for the potential of the handler

‣ Instrument typing judgements with potentials

q

r 1 + r
1
r

19

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Adding potentials

20

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Type system
Adding potentials

21

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Theorem
Overhead

‣ Given

‣ (System-wide) OblivIO trace

‣ (System-wide) Unpadded trace

- Without dummy messages

‣ Then

‣

τ1

τ2

|τ1 | ≤ |τ2 | * c

22

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Example
Example 2 revisited

23

channel pongH $M: intH;

PINGH $N (x: intH) {
oblif x
then send(PONG,1);
else send(PONG,0);

}

channel pingH $N: intH;

PONGH $M (x: intH) {
oblif x
then send(PING,1);
else send(PING,0);

}

$M=2+2*$N$N=2+2*$M

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Discussion
Limitations

‣ Events are network messages only

‣ Cannot react to events with secret presence

‣ Constant-time implementation of all operations

‣ Programs are static

‣ No dynamically registered handlers

‣ Functions not first-class

‣ Channels not first-class

24

oblif secret
then ch ?= ALICE/GREET;
else ch ?= BOB/GREET;
send(ch,”Hello");

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Summary
Mitigating traffic analysis with OblivIO

‣ Message presence

‣ Sending dummy messages under phantom mode

‣ Message timing

‣ Data-obliviousness ensuring constant-time execution

‣ Message size

‣ Padding value size at oblivious assignments

‣ Message recipient

‣ Channels given in program text

25

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Conclusion
Takeaways

‣ OblivIO

‣ Secures reactive programs by oblivious execution

- Well-typed programs do not leak by traffic patterns (Theorem 1)

‣ Bound on the traffic overhead

- Every real message generates at most dummy messages (Theorem 2)c

26

Thank you!

jfblaa@cs.au.dk

mailto:jfblaa@cs.au.dk

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Related work
Traffic analysis

‣ S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web applications: A reality today, a challenge
tomorrow,” in 2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 191–206.

‣ G. Cherubin, J. Hayes, and M. Juárez, “Website finger-printing defenses at the application layer.” Proc. Priv.
Enhancing Technol., vol. 2017, no. 2, pp. 186–203, 2017.

‣ K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo, i still see you: Why efficient traffic analysis
countermeasures fail,” in 2012 IEEE symposium on security and privacy. IEEE, 2012, pp. 332–346.

27

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Related work
Constant-time execution and data-obliviousness

‣ S. Zahur and D. Evans, “Obliv-c: A language for extensible data-oblivious computation,” IACR Cryptol. ePrint Arch.,
p. 1153, 2015. [Online]. Available: http://eprint.iacr.org/2015/1153

‣ C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm: A programming framework for secure computation,” in
2015 IEEE Symposium on Security and Privacy. IEEE, 2015, pp. 359–376.

‣ G. Barthe, B. Grégoire, and V. Laporte, “Secure compilation of side-channel countermeasures: the case of
cryptographic “constant-time”,” in 2018 IEEE 31st Computer Security Foundations Symposium (CSF). IEEE, 2018,
pp. 328–343.

‣ S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby, J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D.
Stefan, “Fact: a dsl for timing-sensitive computation,” in Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2019, pp. 174–189.

28

http://eprint.iacr.org/2015/1153

OblivIO: Securing reactive programs by oblivious execution with bounded traffic overheads Jeppe Fredsgaard Blaabjerg, Aarhus University

Related work
Resource analysis

‣ J. Hoffmann and M. Hofmann, “Amortized resource analysis with polynomial potential,” in European Symposium on
Programming. Springer, 2010, pp. 287–306.

‣ J. Hoffmann, K. Aehlig, and M. Hofmann, “Resource aware ml,” in International Conference on Computer Aided
Verification. Springer, 2012, pp. 781–786.

‣ N. R. Krishnaswami, N. Benton, and J. Hoffmann, “Higher-order functional reactive programming in bounded space,”
ACM SIGPLAN Notices, vol. 47, no. 1, pp. 45–58, 2012

‣ M. Dehesa-Azuara, M. Fredrikson, J. Hoffmann et al., “Verifying and synthesizing constant-resource implementations
with types,” in 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 710–728.

29

