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Yeom et al.'s Membership Experiment
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*where ~ denotes independent, identically distributed sampling

Adv = 2 - Pr(adversary is correct) — 1
=TPR — FPR

AGE 3 %’ WATERLOO



standard ML Models are Vuinerable to MIAS
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IMAGE CREDIT: Yeom et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting (2018)
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Differentially Private Learning rr(a(s) e R) < e Pr(A(S") € R) +6
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The properties of DP allow certain bounds to be proven (under Yeom et al.’s
experiment)

Yeom et al.’s Bound 2018

Adv < e —1

Erlingson et al.’s Bound 2019

Adv <1—e “(1—9)

Current belief is that they are quite loose in practice.
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ML Privacy meter
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IMAGE CREDIT: Murakonda and Shokri — ML Privacy Meter (2020)

ML Privacy Meter
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\4
Privacy Risk
Report for the
Training Data

= Data analyst provides model along with training and test data to get a risk score.

= Risk score is calculated by running state of the art MIAs on user provided data.
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In Summary...

= ML models can be vulnerable to MIAs

= DP is a popular defense that gives provable bounds on MIAs

= When samples are independent from the same distribution (IID assumption)

= Risks are generally thought to be much lower than the bound in practice
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q We investigate prior membership experiments and provide a tighter bound under
Yeom et al.’s experiment.

We construct a generalized membership experiment that addresses the
weaknesses of previous experiments.

We evaluate the performance of off-the-shelf MIAs under our generalized
membership experiment.

g We show that dependencies have a strong influence on attack performance,
surpassing the theoretical bounds of DP.
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URRENT MIA EXPERIMENTS
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Strong Adversary Memhership Experiment
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Strong Adversary Memhership Experiment
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Yeom et al.'s Membership Experiment
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Strong Adversary Memhership Experiment Yeom et al.’s Membership Experiment

Sample Data Point

D

Data
Distribution }

member

/ b=? Target bi=2
S K / S ~ D" " Model K /

Partial Training Set Training Set

*where ~ denotes independent, identically distributed sampling

A DP bound on the strong adversary implies a bound on the MIA adversary
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Tighter Bound

Adv <

Proof Sketch:

e — 1+ 20

— ec + 1

Adv < max{TPR — FPR}

=1—min{FNR + FPR}

—=1—

2(1 — 4)

1+ €€
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The Composition Theorem for Differential
Privacy
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Adv <e® —1 (3)

v N [ Yeom et al. (Eq. 3)
508- Erlingsson et al. (Eq. 4)
§ | — Tighter bound (Eq. 5)
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What is wrong with Yeom et al.'s Membership Experiment?
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Biased Data in ML

An Investigation of
Why Overparameterization Exacerbates Spurious Correlations

Shiori Sagawa " ! Aditi Raghunathan "' Pang Wei Koh"! Percy Liang '

Abstract

We study why overparameterization—increasing
model size well beyond the point of zero training
error—can hurt test error on minority groups de-
spite improving average test error when there are
spurious correlations in the data. Through sim-
ulations and experiments on two image datasets,
we identify two key properties of the training data
that drive this behavior: the proportions of major-
ity versus minority groups, and the signal-to-noise
ratio of the spurious correlations. We then analyze
a linear setting and theoretically show how the
inductive bias of models towards “memorizing”
fewer examples can cause overparameterization

spurious

Worst-Group Error

Train
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i Model Size
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Targeted Data-driven Regularization for Out-of-Distribution
Generalization

Mohammad Mahdi Kamani, Sadegh Farhang, Mehrdad Mahdavi and James Z. Wang
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The Pennsylvania State University, University Park, Pennsylvania

ABSTRACT

Due to biases introduced by large real-world datasets, deviations
of deep learning models from their expected behavior on out-of-
distribution test data are worrisome. Especially when data come
from imbalanced or heavy-tailed label distributions, or minority
groups of a sensitive feature. Classical approaches to address these
biases are mostly data- or application-dependent, hence are burden-
some to tune. Some meta-learning approaches, on the other hand,
aim to learn hyperparameters in the learning process using differ-
ent objective functions on training and validation data. However,
these methods suffer from high computational complexity and are
not scalable to large datasets. In this paper, we propose a unified
data-driven regularization approach to learn a generalizable model
from biased data. The proposed framework, named as targeted
data-driven regularization (TDR), is model- and dataset-agnostic,
and employs a target dataset that resembles the desired nature of
test data in order to guide the learning process in a coupled man-
ner. We cast the problem as a bilevel optimization and propose an
efficient stochastic gradient descent based method to solve it. The
framework can be utilized to alleviate various types of biases in
real-world applications. We empirically show, on both synthetic and

real-warld datacete the enmeriar nerfarmance of TR far recalvine

1 INTRODUCTION

Drastically improving their performance, machine learning, and
more distinctively, deep learning models, are becoming the main
propulsion of technology in a variety of domains. Notwithstanding
their success, they still suffer from different forms of biases in the
training data distribution. Biases, regardless of their nature, cause
a mismatch between training and testing data distributions, which
leads to a poor out-of-distribution generalization performance of
the model. Machine learning models inherit these biases due to
the only objective of minimizing the empirical risk on the training
data in their learning process. However, empirical risk by itself
seems incapable of avoiding these biases in training data for better
out-of-distribution generalization, and needs to be accompanied by
other objectives [35].

These biases can appear in different forms in training a machine
learning model. A palpable form of them happens when the size of
different classes or groups are unbalanced. When class sizes are not
balanced, the imbalanced dataset problem stems [9, 24, 44], where
majority classes’ distribution can dominate the training process,
resulting in a model with low accuracy on minority classes. A
severe form of imbalanced dataset problem, appears in most real-

warld hio datacete with immence nuimher of claceec ic lano-tailed
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however, is fraught with pitfalls. One of the most significant is the

s an increasingly important aspect of data publishing. Reasoning about privacy,
xiliary informa

tion (also called external knowledge, background knowledge, or side information) that
an adversary gleans from other channels such as the web, public records, or domain
knowledge. Schemes that retain privacy guarantees in the presence of independent re-
are said to compose securely. The terminology, borrowed from cryptography
(which borrowed, in turn, from software engineering), stems from the fact that schemes
that compose securely can be designed in a stand-alone fashion without explicitly taking
other releases into account. Thus, understanding independent releases is essential for
enabling modular design. In fact, one would like schemes that compose securely not
only with independent instances of themselves, but with arbitrary external knowledge.
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Dwork, McSherry, Nissim, and Smith [7]) are viewed as providing meaningful guarantees
even in the presence of arbitrary side information. In this paper, we give a prec
formulation of this statement. First, we provide a Bayesian formulation of “pure
differential privacy which explicitly models side information. Second, we prove that the
relaxed definitions of Blum et al. [2], Dwork et al. [6] and Machanavajjhala et al. [14]
imply the Bayesian formulation. The proof is non-trivial, and relies on the “continuity”
of Bayes’ rule with respect to certain distance measures on probability distributions.
Our result means that techniques satisfying the relaxed definitions can be used with
the same sort of assurances as in the case of pure differentially-private algorithms, as
long as parameters are set appropriately. Specifically, (e, §)-differential privacy provides
ful guarantees wk 4, the additive error parameter, is smaller than about
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multivariate mixture model
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Relaxing the 11D Assumption:

How to sample S ~ D

Choose a subpopulation at random (e.g.,

Sample S from
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Generalized Memhership Experiment
D={Dy,D,,...,Dg)

' non-member b ~ {0,1}
Joint )
Distribution A, ID)\ Dk i
k~|K )
K] z~ S
Y member

| ; b="?
S ~ Dy Lam y

Training Set
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Questions Ahout This Experiment

—— Is there a provable bound on the attack by DP learning?

e Yes, but

« No longer bounded by the strong adversary experiment.

« It requires noise proportional to the size of the data set: n-e
« A tighter bound may exist

——  Could the adversary use the distribution information in attack?

e Yes, but
« In practice, the mixture components may have overlapping support

e The n-e-DP bound would still hold
e The distribution information could be removed in a further refinement
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EMPIRICAL EVALUATION
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= We use the source code from Jayaraman and Evans (only RDP)
= Off the shelf ML datasets (e.g. UCI ML Repository)

= Data Curation:

Dy

Member Set (n)

Do

/ Non-Member Set (n)
Leftover D } Shadow Model Data
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Unmodified MIA Attacks - Yeom et al.’s Threshold Attack

= Idea: the model will have a lower loss on members of the training set.

(X)
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If loss (f(x),y) < T, then
(x,y) is a member!




= Train k shadow models f,4, ..., f;x (same classification task as the target model).
data with a similar distribution.

Dy, g A Train L2 o2
g o o
o o

® o A
ggl\ " Dskgﬂ Train »

UNIVERSITY OF
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Assumption: the adversary has




Train a new attack model f,;; to predict the “membership status” from “confidence scores, true
label”

n fatt

§-m-B
1

x=[confidence scores, true label],
y=[ /non-member]
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Member Set (n)

‘ Member Set Inl \
Non-Member Set (n

Non-Member Set (n)
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Membership Advantage

Each mixture component corresponds to a single hospital
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Fig. 6: Performance of the optimal threshold attack in the heart dataset when members belong to a particular database

(hospital/institution), and non-members are taken from all other databases
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= We used unmodified membership inference attacks.

= The attack has no background information on the distribution of members and non-members
= We used real-world data sets from the web, standard machine learning training
Clearly: The attacks exceed the bound for non-iid data

Conclusion: Differential Privacy does not protect as expected
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R —————————S——————.I——————————————S—S—S————————————————————
Inherit Dependencies- Texas Hospital Data

D, = Hospitals in region 3 D, = All other regions
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Membership Advantage

D, = Census Dataset
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Shadow Model Attack
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WORST GASE EVALUATION
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Membership Advantage
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The Gap Observed in the Literature - Revisited

Membership Advantage

Average Threshold Attack

—— =

—e— non-lID
1D
-==|ID bound

1071 10° 10! 10?2 103 ©

3

©
BN
3

]
1
I
I
I

-t
b
o

£-DP Bound

o
—_
97}

J
I
I
I
I
I
!
I
4
I
I
!

Membership Advantage
o o
>
o o

o
o
o

:

102 10-' 10° 10! 102 10°
Privacy Budget (g)
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= We provide a more general membership experiment.
= We have shown that off-the-shelf attacks can break the bounds of DP.

= Data dependencies can cause much higher privacy leakage than previously
reported.

= The IID assumption is an integral component of past results upholding the
integrity of DPML at high epsilon

= Tools such as ML privacy meter do not give the full picture

“Data dependencies should be taken into account when studying MIA performance,
as they are a realistic assumption that, if ignored, can lead to a significant
underestimation of the privacy risk that MIAs pose”.
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