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Membership Inference
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Yeom et al.’s Membership Experiment
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Standard ML Models are Vulnerable to MIAs
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IMAGE CREDIT: Yeom et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting (2018) 



Differentially Private Learning
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Bounds on MIAs
§ The properties of DP allow certain bounds to be proven (under Yeom et al.’s 

experiment)

§ Yeom et al.’s Bound 2018

§ Erlingson et al.’s Bound 2019

§ Current belief is that they are quite loose in practice.
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The Gap Observed in the Literature
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IMAGE CREDIT: Jayaraman and Evans - Evaluating Differentially Private Machine Learning in Practice (2019) 
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ML Privacy meter

§ Data analyst provides model along with training and test data to get a risk score.

§ Risk score is calculated by running state of the art MIAs on user provided data.
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IMAGE CREDIT: Murakonda and Shokri – ML Privacy Meter (2020) 



In Summary…

§ ML models can be vulnerable to MIAs

§ DP is a popular defense that gives provable bounds on MIAs 
§ When samples are independent from the same distribution (IID assumption)

§ Risks are generally thought to be much lower than the bound in practice
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Our Contributions
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We investigate prior membership experiments and provide a tighter bound under 
Yeom et al.’s experiment.

We construct a generalized membership experiment that addresses the 
weaknesses of previous experiments.

We evaluate the performance of off-the-shelf MIAs under our generalized 
membership experiment. 

We show that dependencies have a strong influence on attack performance, 
surpassing the theoretical bounds of DP.



CURRENT MIA EXPERIMENTS
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Strong Adversary Membership Experiment
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Strong Adversary Membership Experiment

PAGE  13

Target 
Model

!𝑆

!𝑆 ∪ {𝑧′}

!𝑆 ∪ {𝑧}

b ~ {0,1}

b = ?

0

1

Partial Training Set

z'

Sample Data Point

𝑧



Strong Adversary Membership Experiment
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Yeom et al.’s Membership Experiment
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Under IID Assumption the Attackers are Similar
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A DP bound on the strong adversary implies a bound on the MIA adversary



Tighter Bound
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IMAGE CREDIT: Kairouz et al. 2017
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Comparing the Bounds
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What is wrong with Yeom et al.’s Membership Experiment?
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Biased Data in ML 



DP under non-IID data
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IMAGE CREDIT: Tschantz et al. – SoK: Differential Privacy as a Causal Property (2020) 



Relaxing the IID Assumption:
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Feature and Label Space

multivariate mixture model 



Relaxing the IID Assumption:
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How to sample 
§ Choose a subpopulation at random (e.g.,                )

§ Sample S from 



Generalized Membership Experiment
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Questions About This Experiment
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• Yes, but
• No longer bounded by the strong adversary experiment.
• It requires noise proportional to the size of the data set: n×ε

• A tighter bound may exist

Is there a provable bound on the attack by DP learning?

• Yes, but
• In practice, the mixture components may have overlapping support

• The n×ε-DP bound would still hold
• The distribution information could be removed in a further refinement

Could the adversary use the distribution information in attack?



EMPIRICAL EVALUATION
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Experimental Setup
§ We use the source code from Jayaraman and Evans (only RDP)

§ Off the shelf ML datasets (e.g. UCI ML Repository)

§ Data Curation:
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Unmodified MIA Attacks – Yeom et al.’s Threshold Attack
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Train

𝐷 𝑓 𝑥

𝑓(𝑥)

If loss 𝑓 𝑥 , 𝑦 < 𝑇, then 
(𝑥, 𝑦) is a member!

§ Idea: the model will have a lower loss on members of the training set.



Unmodified MIA Attacks – Shokri et al.’s Shadow Model Attack
§ Train 𝑘 shadow models 𝑓34, … , 𝑓35 (same classification task as the target model).
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Assumption: the adversary has 
data with a similar distribution.
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𝑓!$𝐷!$

7𝐷!$

for each sample

for each sample

𝑥=[confidence scores, true label], 
𝑦=[member/non-member]

Train

𝑓%&&

Train a new attack model 𝑓!"" to predict the “membership status” from “confidence scores, true 
label”

Unmodified MIA Attacks – Shokri et al.’s Shadow Model Attack
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Simulating the IID Case
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Inherit Dependencies- Hospital Data
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𝐷" = Members 𝐷' = Members 𝐷( = Members 𝐷) = Members

Each mixture component corresponds to a single hospital

Fig. 6: Performance of the optimal threshold attack in the heart dataset when members belong to a particular database 
(hospital/institution), and non-members are taken from all other databases 



Recall:
§ We used unmodified membership inference attacks.

§ The attack has no background information on the distribution of members and non-members

§ We used real-world data sets from the web, standard machine learning training

Clearly: The attacks exceed the bound for non-iid data

Conclusion: Differential Privacy does not protect as expected
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Inherit Dependencies- Texas Hospital Data 
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Fig. 8: Results in texas dataset when members are from hospitals in region 3, and non-members are from any other region. 

𝐷" = Hospitals in region 3 𝐷' = All other regions



Inherit Dependencies- Census Data 
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Fig. 9: Results when training a model with census, where non-members are from adult dataset. 

𝐷" = Census Dataset 𝐷' = Adult Dataset



WORST CASE EVALUATION
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K-Means Split
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Cluster Split - Adult
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The Gap Observed in the Literature - Revisited
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IMAGE CREDIT: Jayaraman and Evans - Evaluating 
Differentially Private Machine Learning in Practice (2019) 
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Conclusions
§ We provide a more general membership experiment.

§ We have shown that off-the-shelf attacks can break the bounds of DP.

§ Data dependencies can cause much higher privacy leakage than previously 
reported.

§ The IID assumption is an integral component of past results upholding the 
integrity of DPML at high epsilon 
§ Tools such as ML privacy meter do not give the full picture

“Data dependencies should be taken into account when studying MIA performance, 
as they are a realistic assumption that, if ignored, can lead to a significant 
underestimation of the privacy risk that MIAs pose”.
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THANK YOU!
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