Towards a Game-Theoretic Security Analysis of Off-Chain Protocols

Computer Security Foundations Symposium 2023 July 10, Dubrovnik Sophie Rain, Zeta Avarikioti, Laura Kovacs, Matteo Maffei

(Dis-)Proving Incentives and Punishment Mechanisms in Off-Chain Protocols do what they should - using Game Theory

Computer Security Foundations Symposium 2023 July 10, Dubrovnik Sophie Rain, Zeta Avarikioti, Laura Kovacs, Matteo Maffei

Structure

- Incentive and Punishment Mechanisms
- Game-Theoretic Security Properties
- Modeling Protocols as Games
- Results

- Opening phase. A, B (couple) lock 5 coins each, claimed by redistribution \rightarrow Transaction on the blockchain
- can redistribute their 10 coins multiple times
- Lock = both signatures required

- Opening phase. A, B (couple) lock 5 coins each, claimed by redistribution \rightarrow Transaction on the blockchain
- can redistribute their 10 coins multiple times
- Lock = both signatures required
- Update phase. E.g. B buys something for both (2 coins), A wants to give him her half.
 They agree on updating the redistribution state to 4 for Alice, 6 for Bob. → off-chain
- many more updates follow...

2 cases for closing phase

Consensus (honest).

- A, B still happy, want to close channel
- publish latest update on the blockchain
- receive fair part of money

2 cases for closing phase

Consensus (honest).

- A, B still happy, want to close channel
- publish latest update on the blockchain
- receive fair part of money

Dispute (honest).

- horrible break-up, closing required
- A wants to do better than last update
- A publishes old distribution state on the blockchain
- B can prove state is outdated
- B receives 10 coins, A 0 coins

Honest Behavior

intended course of action in protocol

Is it always rational for cheated party to prove other published outdated state?

What is done already?

Cryptographic aspects of Blockchain protocols

- Universal Composability Framework:
- cryptography = ideal functionality
- ... but what about rationality?

Incentive / Punishment mechanisms

rely on game-theoretic arguments

e.g. Lightning's closing

3 types of users

3 types of users

No one has a reason to deviate!

3 types of users

No one has a reason to deviate!

1) Incentive-Compatibility

"no profit from deviation"

– 2) Byzantine-Fault Tolerance

• "even in presence of *Byzantine* users, *honest* ones not harmed"

Note: 1) + 2) enough No assumption of honest/rational percentage

What do we verify *exactly*?

- 1) Incentive-Compatibility

Practicality

Collusion Resilience

$$\forall C, d_C. \quad \sum_{R \in C} u_R(h_C, h_{\neg C}) \geq \sum_{R \in C} u_R(d_C, h_{\neg C})$$

alway

always greedy choice

\$\$

- 2) Byzantine-Fault Tolerance

Weak Immunity

Informatics

$$\forall r_{\neg H}. \quad u_H(h_H, r_{\neg H}) \geq 0$$

Introduction to Game Theory

Extensive Form Game

Introduction to Game Theory

Modeling Lightning's closing

publish latest state (a,b) **publish old state (a+d, b-d)** sign closing tx (a,b), or (a+c,b-c)

Modeling Lightning's closing

A, B

publish latest state (a,b) **publish old state (a+d, b-d)** sign closing tx (a,b), or (a+c,b-c)

ignore (a+d, b-d) prove it was old state (0, a+b-f)

Modeling Lightning's closing

publish latest state (a,b) **publish old state (a+d, b-d)** sign closing tx (a,b), or (a+c,b-c)

ignore (a+d, b-d) prove it was old state (0, a+b-f)

A, B

symbolic, constraint, relative, infinitesimal, quantified

Full Model for Lightning's Closing

R Informatics

Full Model for Lightning's Closing

 $(d_A + \alpha - \varepsilon, -d_A + \alpha)$

 $(-a, a-f+\alpha)$ $(-a, a-f+\alpha)$

Full Model for Lightning's Closing

 $(d_A + \alpha - \varepsilon, -d_A + \alpha)$

 $(-a, a-f+\alpha)$ $(-a, a-f+\alpha)$

Full Model for Lightning's Closing

 $(d_A + \alpha - \varepsilon, -d_A + \alpha)$

Full Model for Lightning's Closing

 $(d_A + \alpha - \varepsilon, -d_A + \alpha)$

"Partial" Model for Lightning's Routing

How do we verify it?

A Protocol is Secure, if...

...its intended behavior satisfies IC and BFT.

Protocol \rightarrow Extensive Form Game

Intended Behavior \rightarrow "honest" terminal history h*

A game + h* are **secure**, if...

...there are strategies extending h*, which are **weak immune**, **collusion resilient**, **practical**.

Security Results for Closing and Routing

No unknown attacks found.

Security Results for Closing and Routing

No unknown attacks found.

Closing $(a \rightarrow A, b \rightarrow B)$:

Can honest participants be harmed? YES, if a,b < f

Is the honest behavior rational? No, old state (a+d \rightarrow A, b – d \rightarrow B), where a+d < f

Security Results for Closing and Routing

No unknown attacks found.

Closing $(a \rightarrow A, b \rightarrow B)$:

Can honest participants be harmed? YES, if a,b < f

Is the honest behavior rational? No, old state $(a+d \rightarrow A, b-d \rightarrow B)$, where a+d < f

Routing:

Can honest participants be harmed? YES

Is the honest behavior rational? NO

Take-Away

Sophie Rain

sophie.rain@tuwien.ac.at

<u>LinkedIn</u>

Towards a Game-Theoretic Security

Analysis of Off-Chain Protocols

